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We report on our calculation of the nucleon axial and tensor charges in 2+1-flavor QCD with dy-
namical overlap quarks. Gauge ensembles are generated at a single lattice spacing 0.12 fm and at
a strange quark mass close to its physical value. We employ the all-mode-averaging technique to
calculate the relevant nucleon correlation functions, and the disconnected quark loop is efficiently
calculated by using the all-to-all quark propagator. We present our preliminary results for the
isoscalar and isovector charges obtained at pion masses mπ =450 and 540 MeV.
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1. Introduction

The nucleon charges represent the nonperturbative nature of QCD, and are also relevant to the
search for new physics beyond the Standard Model. The nucleon axial charge ∆q for the quark
flavor q is defined by

〈N(p,s)|q̄γµγ5q|N(p,s)〉 = 2mNsµ∆q, (1.1)

where p and s are four-vector momentum and polarization of the nucleon, respectively. This probes
the quark contribution to the nucleon spin, and is a fundamental quantity to understand the so-called
“proton spin puzzle”. The tensor charge δq is defined by

〈N(p,s)|q̄iσµνγ5q|N(p,s)〉 = 2(sµ pν − sν pµ)δq, (1.2)

and describes the contribution of possible tensor-type interactions beyond the Standard Model to
nucleon observables. It appears in the search for new physics through precision measurements of
the electric dipole moment and the β decays.

We recently calculated the strange-quark scalar charge 〈N|s̄s|N〉 in lattice QCD with dynamical
overlap quarks. In Ref. [1], we utilized the Feynman-Hellmann theorem to obtain the scalar charge,
whereas we directly calculated the nucleon disconnected three-point function by using the all-to-all
quark propagator [2, 3]. In this article, we extend the latter study to the axial and tensor charges.
We report our preliminary results for the isovector charges, gA=∆u−∆d and gT =δu−δd, as well
as those for the isoscalar charges gs

A =∆u+∆d and gs
T =δu+ δd, and the strange-quark charges,

∆s and δ s, which receive contributions from the disconnected diagram.

2. Simulation method

We simulate three-flavor QCD using the Iwasaki gauge action and overlap quark action. Nu-
merical simulations are remarkably accelerated by simulating trivial topological sector with a
modification of the gauge action [4]. Gauge ensembles are generated on a 163×48 lattice at a
lattice spacing a= 0.12 fm and with a strange quark mass ms = 0.080 close to its physical value
ms,phys =0.081. In this article, we present results at two values of degenerate up and down quark
masses, mud = 0.035 and 0.050, which correspond to the pion masses mπ ∼ 450 and 540 MeV,
respectively. We note that simulations at lighter pion masses 290 – 380 MeV are in progress.

We calculate the nucleon three-point function

C3pt(tsrc,ysrc,∆t,∆t ′) =
1

N6
s
∑
x,z

{
trs

[
P
〈
N(x, tsrc +∆t ′)OΓ(z, tsrc +∆t)N̄(ysrc, tsrc)

〉]
−
〈
OΓ(z, tsrc +∆t)

〉
trs

[
P
〈
N(x, tsrc +∆t ′)N̄(ysrc, tsrc)

〉]}
, (2.1)

where P = (1+ γ4)γ5γ3 is the polarization matrix, and use the quark bilinear operator OΓ= q̄γ3γ5q
for the axial charge (Γ=A) and iq̄σ03γ5q for the tensor charge (Γ = T ), respectively. The nucleon
interpolating operator is N = εabc(uT

a Cγ5db)uc, for which we apply the Gaussian smearing q(x, t) =
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∑y
{
(1+ωH/4N)N

}
x,y qlocal(y, t) with Hx,y = ∑

3
i=1(δx,y−î+δx,y+î) in order to enhance the overlap

with the nucleon ground state. The parameters ω=20 and N=400 are chosen from our experience
in Refs. [2, 3].

The nucleon charges are extracted from the ratio

R(t) = ZΓ

C3pt(∆t,∆t ′)
C2pt(∆t ′)

−−−−−−−−→
∆t,∆t ′−∆t→∞

〈N|ZΓOΓ|N〉
2mN

, (2.2)

where C2pt is the nucleon two-point function with the same nucleon interpolating fields and the
same time separation ∆t ′ as those for the three-point function. The arguments (tsrc,ysrc) of the
correlators are omitted (see the following discussion), and ZΓ is the renormalization factor in the
MS scheme at µ = 2 GeV. In this preliminary analysis, we use the values in Ref. [5], which are
for the flavor non-singlet bilinear operators, both for the isovector and isoscalar charges, ignoring
possible shift due to the presence of the disconnected contribution.

We calculate the quark loop in the disconnected diagram by using the all-to-all quark propa-
gator [6, 7]. Namely, the propagator is decomposed into the contribution of the low-lying modes
of the overlap-Dirac operator D

(D−1)low(x,y) =
Ne

∑
i=1

1
λ (i)

v(i)(x)v(i)†(y) (2.3)

and the remaining part (D−1)high. Here λ (i) and v(i) represent the i-th lowest eigenvalue of D and
the associated eigenvector, respectively. The number of low-modes is set to Ne=160.

The contribution of the remaining high-modes is estimated by the noise method [8]. For each
configuration, we prepare a complex Z2 noise vector η(x), which is diluted into Nd = 3×4×Nt/2
vectors η(d)(x) (d=1, · · · ,Nd) with respect to the color and spinor indices as well as the temporal
coordinate. For more details on our implementation, see Refs. [2, 3]. The high-mode contribution
is then given by

(D−1)high(x,y) =
Nd

∑
d=1

ψ
(d)(x)η(d)†(y), (2.4)

where ψ(d)(x) is the solution of Dψ(d)=(1−Plow)η
(d) with Plow the projection operator to the

eigenspace spanned by the low-modes {v(i)}.
We observe that the nucleon correlators constructed by the all-to-all propagator suffer from a

large statistical noise, since only single noise vector is used for each configuration. We therefore
employ the all-mode averaging technique [9] to calculate C2pt and C3pt. Let us consider the decom-
position C3pt =C3pt,low+C3pt,high, where C3pt,low represents the contribution in which the low-mode
truncation (2.3) is used for all the four quark propagators. For the remaining contribution C3pt,high,
we use the so-called point-to-all propagator ψpt(x), which is obtained by solving Dψpt = b with
b(x, t)∝{(1+ωH/4N)N}x,x′δx′,ysrcδt,tsrc with a source point (ysrc, tsrc).

We employ the low-mode averaging (LMA) [10, 11] for C3pt,low. Namely this contribution is
replaced by that averaged over the source points (y, tsrc). We take one point per time-slice, and the
number of the source points is Nsrc,low=48. LMA in our study can be expressed as

C3pt,low
(
tsrc,ysrc,∆t,∆t ′

)
→C3pt,low

(
∆t,∆t ′

)
=

1
Nsrc,low

Nsrc,low

∑
tsrc=1

C3pt,low
(
tsrc,ysrc(tsrc),∆t,∆t ′

)
, (2.5)
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Figure 1: Improvement of statistical accuracy in isovector (left panel) and isoscalar (right panel) charges.
The circles (triangles) shows the charge calculated without (with) LMA and TSM. We also compare the
low-mode contributions to the charge, which are calculated by using C3pt,low and a similar part for C2pt in
Eq. (2.2), before (square) and after (cross) LMA.

where ysrc is considered as a function of tsrc.
For the high-mode contribution C3pt,high, we use the truncated solver method (TSM) [12] and

replace C3pt,high (tsrc,ysrc,∆t,∆t ′) by

C3pt,high
(
∆t,∆t ′

)
= C3pt,high

(
1,1,∆t,∆t ′

)
−C̃3pt,high

(
1,1,∆t,∆t ′

)
+

1
Nsrc,high

2Nsrc,high−1

∑
tsrc=1,3,···

C̃3pt,high
(
tsrc,ysrc(tsrc),∆t,∆t ′

)
, (2.6)

where 1 denotes the origin of the lattice. We use the stopping condition |Dψpt − b| ≤ 10−7 for
C3pt,high, and a more relaxed one 10−2 for the approximated estimator C̃3pt,high. In this study, we
average C̃3pt,high over Nsrc,high=24 source points, namely one point per two time-slices.

Figure 1 demonstrates the improvement of the statistical accuracy of the axial charges by LMA
and TSM. We observe about a factor of five improvement by LMA in the low-mode contribution
to the isovector charge gA. Then the statistical error of gA is largely dominated by that of the
high-mode contribution, and is reduced by a factor of about four by TSM. Note that these gains are
(only) slightly smaller than the ideal values,

√
Nsrc,low∼7 and

√
Nsrc,high∼5, due to the correlation

in each configuration. We observe that LMA and TSM are less effective for the isoscalar and
strange-quark charges, which also show large statistical error.

3. Numerical results

In Fig. 2, we plot the effective value of the isovector charges, gA and gT , obtained from the
ratio (2.2). Data are stable against the choice of ∆t and ∆t ′ suggesting that the excited state contam-
ination is reasonably suppressed with our choice of the smeared nucleon operator. We determine
the charges by a constant fit to these data. The statistical error is typically 3 % for both mπ =450
and 540 MeV with our simulation method using the all-mode averaging technique.

The effective value of the isoscalar tensor charge gs
T is plotted in the left panel of Fig. 3. We

observe that the isoscalar charges, gs
T and gs

A, have larger statistical error, typically 10 %, due to the
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Figure 2: Effective value of isovector axial (left panel) and tensor (right panel) charges at mπ =540 MeV.
We plot data with different values of ∆t ′ by different symbols and the constant fit by solid lines.
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Figure 3: Effective value of isoscalar tensor charge (left panel) and strange-quark tensor charge (right
panel) at mπ =540 MeV.

presence of the noisy disconnected contribution. On the other hand, the strange-quark charges, ∆s
and δ s, consist solely of the disconnected contribution. As shown in the right panel of Fig. 3, these
charges are consistent with zero within the statistical error.

Figure 4 shows the chiral extrapolation of the isovector charges. We observe their mild m2
π

dependence, and the data are consistent with previous lattice studies of gA [13]. We employ a
simple linear extrapolation in terms of m2

π , and obtain

gA = 1.16(12)(9), gT = 1.31(12)(11), (3.1)

where the first error is statistical, and the second is the discretization error estimated by power
counting O((aΛQCD)

2)∼ 8 % with ΛQCD = 500 MeV. These are consistent with previous lattice
studies, gA≈1.10 – 1.25 and gT ≈0.95 – 1.15 [13, 14].

As shown in the left panel of Fig. 5, we also observe a small m2
π dependence for the isoscalar

charges partly because of the larger statistical error due to the disconnected contribution. A linear
chiral extrapolation yields

gs
A = 0.63(18)(5), gs

T = 0.81(20)(7). (3.2)
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Figure 4: Chiral extrapolation of isovector charges to physical pion mass. The left and right panels show
the extrapolation for gA and gT , respectively. We also plot the experimental value [17] for gA.

With the present simulation set-up, these isoscalar charges are determined with .30 % accuracy at
the physical point. Our results for the strange-quark charges are consistent with zero at simulated
mπ ’s and hence at the physical point

∆s = −0.11(18)(1), δ s =−0.09(20)(1) (3.3)

as shown in the right panel of Fig. 5. We note that small strange-quark charges have also been
observed in recent studies [15, 16].

Within the present uncertainty, our results for the axial charges, gA and gs
A, are consistent with

the experimental values [17, 18]. The suppression compared to the simple quark model estimate,
gs

A = 1 and gA = 5/3, was argued by one of the authors in Schwinger-Dyson analyses [19, 20].
For more precise comparison with experiment, however, we need a better control of the chiral
extrapolation and discretization error.

4. Summary

We have reported on our calculation of the nucleon axial and tensor charges in lattice QCD
with dynamical overlap fermions. Disconnected nucleon correlation functions are calculated by
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Figure 5: Chiral extrapolation of isoscalar (left panel) and strange-quark (right panel) tensor charges.
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using the all-to-all quark propagator. We also employ the all-mode averaging technique, namely
LMA and TSM in this study, for which we demonstrate their efficiency for both connected and
disconnected functions.

Our preliminary results are consistent with previous lattice studies and experiments. For more
precise determination, we are testing different set-ups of LMA and TSM, for instance Nsrc,low and
Nsrc,high, to reduce the statistical error at simulated mπ ’s. Our on-going calculations at lighter mπ ’s
allow a controlled chiral extrapolation, and hence help improving the statistical accuracy at the
physical point. It is also important to reduce the discretization error especially for the isovec-
tor charges. Simulations on finer lattices with a different chiral fermion formulation are also in
progress [21].

The numerical calculations were performed on Hitachi SR16000 at High Energy Accelerator
Research Organization under a support of its Large Scale Simulation Program (No. 15/16-09), and
on Hitachi SR16000 at Yukawa Institute of Theoretical Physics. This work is supported in part
by the Grant-in-Aid of the MEXT (No. 26247043 and 26400259), RIKEN iTHES Project, RIKEN
Special Postdoctoral Researcher program, MEXT SPIRE and JICFuS.
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