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Nucleon Sigma Terms from Lattice QCD
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The nucleon-sigma-terms are measures of the light-quark- and strange-quark-content of the nu-
cleon. Especially the stangeness-content is of significant interest for dark-matter searches, as it
determines the coupling of several dark matter candidates to hadronic matter. While the sigma-
terms can not be measured directly they can be determined via lattice QCD from first principles.
The sigma-terms are related to the light- and strange-quark mass dependence of the nucleon mass
by the Feynman-Hellmann-theorem. To measure this dependence we used N f = 1+ 1+ 1+ 1
ensembles generated with tree-level improved Symmanzik gauge action and tree-level improved
clover Wilson fermions with three levels of HEX smearing at four values of the lattice spacing.
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1. Introduction

The nucleon sigma terms are defined by the relations

σπN = mud〈N | ūu+ d̄d | N〉 and σs̄sN = 2ms〈N | s̄s | N〉. (1.1)

Here | N〉 is a nucleon state and u,d and s are the respective quark fields. Despite the appearance of
the quark masses mq in their definitions they are renormalization scheme independend quantities.
They are a convenient way to parametrize the scalar quark content of the nucleon. The sigma terms
cannot be measured directly in experiments but are of significant interest. One prominent example
is the search for dark matter. Here the sigma terms enter as they allow to relate couplings at the
quark level to couplings to the nucleon.

There have been several previous computations of the nucleon sigma terms [1–17]. Some of
them are based on phenomenology, others use lattice QCD. An overview of these studies can be
found in figure 1.
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Figure 1: An overview of the estimates of σπN and σs̄sN found in the literature.

This proceedings describes an ongoing study of the nucleon sigma terms on a set of N f =

1+1+1+1 ensembles. These ensembles where generated with a tree-level improved Symmanzik
gauge action and a tree-level improved Clover-Wilson fermion action with 3 iterations of HEX
smearing. Details on these ensembles can be found in [19]. They feature 4 lattice spacings ranging
from 0.102 fm to 0.064 fm.

2. Analysis

To extract the sigma terms the Feynman-Hellman theorem is used. It relates the sigma terms to the
derivative of the nucleon mass with respect to the quark masses via

σπN = mud
∂MN

∂mud

∣∣∣∣
ms

and σs̄sN = 2ms
∂MN

∂ms

∣∣∣∣
mud

. (2.1)

It is interesting to note that, while in the above formula quark masses appears, which must be
proper renormalized, the sigma-term itself requires no renormalization. One way to proceed is to
replace the above derivatives with derivatives with respect to M2

π and M2
s̄s := 1

2(M
2
K0 +M2

K+−M2
π).

In leading order chiral perturbation theory one finds mud ∝ M2
π and ms ∝ M2

s̄s. Therefore one has
the relations

σπN ≈ ∆π = M2
π

∂MP

∂M2
π

∣∣∣∣
M2

s̄s

and
σs̄sN

2
≈ ∆s̄s = M2

s̄s
∂MP

∂M2
s̄s

∣∣∣∣
M2

π

. (2.2)
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In this work the (tiny) error which is introduced by this approach is corrected. This is achieved
by a non-perturbativley defined transformation matrix which relates the above derivatives to the
derivatives of MN with respect to the quark masses. This matrix can be determined without the
need for explicit renormalization factors.

The calculation proceeds in two steps. In the first step the dependence of nucleon mass on
the meson masses is determined. In a second step the transformation matrix is determined which
makes the analysis exact.

2.1 The proton mass as a function of meson masses

In order to fit any model to the lattice data baryon and meson masses must be extracted from the
correlation functions measured on the lattice. This is done by fitting the correlation functions with
the standard ansatzes

C(t) =

{
Acosh(−m(t−Nt/2)) for mesons,

Asinh(−m(t−Nt/2)) for baryons.
(2.3)

starting at an appropriate timelag tmin. The proper value of tmin is not straight forward to deter-
mine: If it is chosen to small then the extracted mass is affected by excited state contributions. If
however tmin is chosen to large one has to face increasing statistical fluctuation which deteriorate
the precision of the extracted masses. In this work the correlation function from all our ensembles
are repeatedly fitted with different values of tmin in physical units. For each ensemble the quality
of fit Q was calculated. In the ideal case where the fitted model fully describes the observed data
one would expect the Q-values to be uniformly distributed between 0 and 1. This can be tested
with a Kolmogorov-Smirnov test. From the Q-values of all ensembles the cumulative distribution
function Fobs of the underlying distribution can be estimated. It can be compared with the expected
cumulative distribution function Fexp(x) = x. This is done by calculating the maximal distance

D = supx |Fobs(x)−Fexp(x)|. (2.4)

The probability P that D is bigger then the observed D is given by a well known function [18].
For each channel tmin was chosen so that P > 0.3. For two channels the behavior of Fobs(x) as a
function of tmin is illustrated in figure 2. A very similar approach was used in [19].
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Figure 2: The behavior of the cumulative distribution function of the fit qualities as a function of tmin for the
pion and proton channels.

For the scale setting MΩ as a function of M2
π and M2

s̄s was fitted to determine the lattice spacing
at the physical point. To estimate the systematic error an additional scale setting with the nucleon
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mass instead of MΩ was performed. Throughout the analysis a mass independent scale setting is
adopted meaning that the lattice spacing depends solely on the gauge coupling β and not on the
quark mass parameters.

The nucleon can show a dependence on both the M2
π and M2

s̄s mass, the lattice spacing a and the
finite volume. Also since in the ensembles used in this work mu 6= md a dependence on MK+−MK0

was allowed. Expanding the nucleon mass around the physical point on gets the leading terms

MP = (c0 + c1(M2
π −M(φ)2

π )+ c2(M2
s̄s−M(φ)2

s̄s )+ c3(MK+−MK0)+ c4C(β )+ . . .)

(1+ c5F(Mπ ,L)). (2.5)

Here . . . is meant to indicate higher order terms that can possibly contribute to the nucleon mass
away from the physical point. To estimate systematic errors introduced by such higher order terms
the lattice data was fitted with several variants of this fit function. These variants where constructed
in the following way:

• Continuum extrapolation is done with either C(β ) = a2(β ) or C(β ) = αs(β )a(β ). Formally
the action used has αsa cutoff effect as it is a tree-level improved action, however often a2

cutoff effects are numerical dominant.

• The next-to-leading term in M2
π is assumed to be either M4

π−M(φ)4
π which is the next term in

a taylor expansion or M3
π −M(φ)3

π which is motivated by chiral perturbation theory.

• Finite volume effects are parametrized via F(L) =
√

Mπ

L3 e−Mπ L or via F(L) = e−Mπ L

Here and throughout the analysis whenever there was no obvious different choice for a term of the
form ciX the contributions of higher order term where estimated by removing the term from the
fit function and multiplying the whole function by either 1+ ciX or 1/(1− ciX). The fits where
performed with three different pion mass cuts. All fits in this analysis are performed with a fully
correlated χ2.

Once the nucleon has been fitted with a suitable fit function one can determine ∆π and ∆s̄s and
chiral perturbation theory could be used to estimate the sigma terms.

2.2 The quark mass dependence

Before the above derivatives can be transformed into quark mass derivatives the quark masses have
to be defined in a proper way. For the method a definition of quark masses is needed which exhibits
only multiplicative renormalization. Such a definition is given by the ratio-difference quark mass
as described in [20]. This method combines the PCAC quark masses and the bare Wilson quark
masses. For quarks of two flavors i and j the ratio of masses ri j and the difference of masses di j

are defined via

ri j =
mPCAC

i

mPCAC
j

and di j = a(mW
i −mW

j ). (2.6)

where mW
i is the bare Wilson quark mass and mPCAC

i is the PCAC quark mass. From these quantities
one can define the ratio-difference quark mass as

am̂rd
i =

1
ZS

amrd
i =

1
ZS

ri jdi j

ri j−1
and am̂rd

j =
1
ZS

amrd
j =

1
ZS

di j

ri j−1
. (2.7)
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Here mrd
i corresponds to the unrenormalized quark mass while m̂rd

i denotes the renormalized quark
mass. These definition can be tree-level improved by a minor modification which is detailed in [20].
In the above formulae ZS is the scalar renormalization factor which has to be determined by another
method. However in the case of the sigma terms the renormalization factor cancels out. To evaluate
the necessary derivatives it suffices to define a ratio

Ri =
amrd

i

amrd,(φ)
i

=
m̂rd

i

m̂rd,(φ)
i

(2.8)

Here m̂rd,(φ)
i denotes the renormalized quark mass at the physical point. The quantity amrd,(φ)

i is
defined separately for each value of the lattice spacing and corresponds to the value of the unrenor-
malized ratio-difference quark mass at this lattice spacing at the physical point. Both definition of
the ratios agree in a mass independent renormalization scheme. In practice amrd,(φ)

i is determined
by a fit to the quark masses with an ansatz of the from

amrd
i = cm(a)(1+ c0(M2

π −M(φ)2
π )+ c1(M2

s̄s−M(φ)2
s̄s )+ c2(MK+−MK0)+ . . .)

(1+ c3F(Mπ ,L)) (2.9)

where cm is a separate fit parameter for each lattice spacing and . . . is meant to correspond to higher
order corrections along the lines of those described in the previous section. From this fit

Ri =
amrd

i
cm(a)

(2.10)

can be extracted. To use the information from this fit function to determine the sigma terms one
has to define a matrix

J =

 mud
M2

π

∂M2
π

∂mud

∣∣∣
ms

mud
M2

s̄s

∂M2
s̄s

∂mud

∣∣∣
ms

ms
M2

π

∂M2
π

∂ms

∣∣∣
mud

ms
M2

s̄s

∂M2
s̄s

∂ms

∣∣∣
mud

 (2.11)

which fulfills (
σπN σs̄sN/2

)T
= J

(
∆π ∆s̄s

)T
. (2.12)

The inverse of J can be easily determined from eq. (2.9) using

(J−1)i j = M j
∂Ri(M2

π ,M
2
s̄s)

∂M2
j

∣∣∣∣∣
M2

k ,k 6= j

. (2.13)

The elements of the matrix J from one representative fit can be found in figure 3. The resulting
matrix is dominated by the diagonal entries which are close to one. The off-diagonal elements
which are much smaller then the diagonal components are describing the mixing between (∆π ,∆s̄s)

and (σπN ,σs̄sN).

3. Results

To estimate the systematic error different versions of all fit functions where employed to estimate
contributions of higher order terms. Also the entire analysis have performed with three different
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Figure 3: The elements of the matrix J described in the main text from one representative fit. The errors are
purely statistical.

pion cuts. The scale setting has been done both with the Ω mass and with the proton mass itself.
All together this resulted in 864 different fit procedures which where combined into a histogram.
The analyses where wighted once with the Akaike-weight as described in [19] and with a uniform
weight. The spread was taken as the systematic error. The statistical error was estimated by repeat-
ing the entire analysis, including the 864 different modifications, on 1000 bootstrap samples. The
combined error was estimated by quadratically adding the systematic and the statistic error.

Before the final numbers can be given the analysis still need to be finalized and a independent
crosscheck by a different member of our collaboration has to be performed. Both σud and σs̄sN

show total error of ∼ 15%. Histograms of all the performed analysis can be found in figure 4.

systematic error
statistical error
combined histogram
combined error

= 864fitsN

systematic error
statistical error
combined histogram
combined error

= 864fitsN

Figure 4: Preliminary histograms of the analysis. The left side corresponds to a value of 0. x-scales are
different. There are three histograms: red: Histogram of the central value for each of the 864 analysis. blue:
Histogram of the bootstrap samples of the mean of the 864 analysis. green: Combined histogram of all
bootstrap samples from all analysis. The yellow bar indicates the total error.
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