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We extract the neutron electric dipole moment (nEDM) |~dn| on configurations produced with

N f = 2+ 1+ 1 twisted mass fermions with lattice spacing of a ≃ 0.082fm and a light quark

mass that correpsonds to Mπ ≃ 373 MeV. We do so by evaluating the CP-odd form factor F3

for small values of the CP-violation parameter θ in the limit of zero momentum transfer. This

limit is extracted using the usual parametrization but in addition position space methods. The

topological charge is computed via cooling and gradient flow using the Wilson, Symanzik tree-

level improved and Iwasaki actions for smoothing. We obtain consistent results for all choices of

smoothing procedures and methods to extract F3 at zero momentum transfer. For the ensemble

analyzed we find a value of nEDM of |~dn|/θ = 0.045(6)(1)e · fm.
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1. Introduction

A non-vanishing neutron Electric Dipole Moment (nEDM) would signal CP-violation. Up

to date, no finite nEDM has been reported in experiments and the best experimental bound [1],

|~dN |< 2.9×10−13e · fm, is several orders of magnitude below what one expects from CP-violation

induced by weak interactions [2]. This makes nEDM searches an interesting probe for Beyond the

Standard Model (BSM) physics.

In strong dynamics, a non-vanishing nEDM can be induced by a Lagrangian density consisting

of the ordinary QCD part, plus, a CP-violating interaction (Chern-Simons) term

LQCD (x) = 1
2g2 Tr

[

Gµν (x)Gµν (x)
]

+∑
f

ψ f (x) (γµ Dµ +m f )ψ f (x)− iθq(x) , (1.1)

(in Euclidean space) where the θ -parameter controls the strength of the CP-breaking and q(x) the

topological charge density defined as q(x) = 1
32π2 εµνρσ Tr

[

Gµν (x)Gρσ (x)
]

. Results from several

model studies [2] suggest that θ is small
(

θ . O
(

10−10 −10−11
))

.

The magnitude of the nEDM at leading order in θ is expressed as |~dN |= θ limQ2→0 |F3(Q
2)|/2mN

[2] where mN denotes the mass of the neutron, Q2 the four-momentum transfer in Euclidean space

and F3(Q
2) the CP-odd form factor. Hence, we can calculate the nEDM by evaluating the zero

momentum transfer limit of F3(Q
2). The CP-odd nucleon matrix element gives access to F3(Q

2).

2. The CP-odd nucleon matrix element

The expectation value of an operator O in a theory with broken CP-symmetry and, thus, in θ 6=
0 vacuum, can be obtained by using the path integral with Lagrangian density given in Eq. (1.1).

Such expectation value for small values of θ can be expressed and expanded as

〈O(x)〉θ = 1
Zθ

∫

d[U ]d[ψ f ]d[ψ̄ f ]O(x) e−SQCD+iθQ=〈O(x)〉θ=0 + iθ 〈O(x)Q〉θ=0+O(θ2) ,(2.1)

where Q =
∫

d4xq(x) is the topological charge. To extract F3 at Q2 =−(p f − pi)
2 we consider the

matrix element of the electromagnetic current Jem
µ in the θ -vacuum 〈N(~p f ,s f )|Jem

µ |N(~pi,si)〉θ =

ūN(~p f ,s f )W θ
µ (Q)uN(~pi,si) where p f (pi) and s f (si) are the momentum and spin of the final (ini-

tial) nucleon state N and

W θ
µ (Q) = F1(Q

2)− i
F2(Q

2)
2mN

Qν σν µ + iθ
(

−i
F3(Q

2)
2mN

Qν σν µγ5 +FA(Q
2)
(

Qµ /Q− γµ Q2
)

γ5

)

, (2.2)

at leading order in θ . F1(Q
2) and F2(Q

2) are the CP-even Pauli and Dirac form factors and F3(Q
2)

and FA(Q
2) the CP-odd electric dipole and anapole form factors respectively. To extract the nEDM

we expand the 3-point(pt) function according to Eq. (2.1) as G
µ ,(θ )
3pt (~q, t f , ti, t) = G

µ ,(0)
3pt (~q, t f , ti, t)+

iθ G
µ ,(0)
3pt,Q(~q, t f , ti, t)+O

(

θ2
)

where G
µ ,(0)
3pt,Q(~q, t f , ti, t) = 〈JN(~p f , t f )J

em
µ (~q, t)JN(~pi, ti)Q〉 is the vac-

uum expectation value for θ = 0 and ~q ≡ ~Q. By spin-projecting the above 3-pt function with

Γk = i
4
(11+ γ0)γ5 γk, (k = 1,2,3) and using the ordinary nucleon 2-pt function G2pt(~q, t f , ti,Γ0)

which is spin-projected by Γ0 =
1
4
(11+ γ0) we can define the ratio

R
µ
3pt,Q(~q, t f , ti, t,Γk)=

G
µ
3pt,Q(~q,t f ,ti,t,Γk)

G2pt(~q,t f−ti,Γ0)

√

G2pt(~q,t f−t,Γ0)G2pt(~0,t−ti,Γ0)G2pt(~0,t f−ti,Γ0)

G2pt(~0,t f−ti,Γ0)G2pt(~q,t−ti,Γ0)G2pt(~q,t f−ti,Γ0)
.(2.3)
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As t f − t, t − ti → ∞ we obtain the plateau Π
µ
3pt,Q (Γk) = limt f −t→∞ limt−ti→∞ R

µ
3pt,Q (~q, t f , ti, t,Γk).

By setting ~p f = 0, EN =
√

~p2
i +m2

N and carrying out the Dirac algebra we obtain

Π0
3pt,Q (Γk) = iCQk

[

α1F1(Q
2)

2mN
+

(EN+3mN)α
1F2(Q

2)
4m2

N

+
(EN+mN)F3(Q

2)
4m2

N

]

, (2.4)

where C = (2m2
N/(EN (EN +mN)))

1/2 and α1 denotes a phase due to CP-violation. We extract α1

using the plateau α1 = limt f −ti→∞ G2pt,Q (0, t f , ti,Γ5)/G2pt (0, t f , ti,Γ0) where G2pt,Q (0, t f , ti,Γ5) is

a 2-pt function weighted by Q and spin-projected by Γ5 = γ5/4. Using Eq. (2.4) in combination

with the plateaus leading to Sachs form factors [3] Π
j
3pt(Γ0) =

−iC
2mN

Q j

(

F1(Q
2)− Q2

4m2
N

F2(Q
2)
)

and

Π
j
3pt(Γk) =

−C
2mN

ε jikQi

(

F1(Q
2)+F2(Q

2)
)

we extract the following linear combination of ratios

Πk
F3
= Π0

3pt,Q(Γk)+ iα1 Πk
3pt (Γ0)+α1 1

2

3

∑
i, j=1

ε jkiΠ
j
3pt (Γi) =

C(EN+mN)

4m2
N

Qk F3(Q
2) , (2.5)

for which the decomposition only depends on the desired form factor F3(Q
2). Eq. (2.5), however,

gives access to QkF3(Q
2) (k=1,2,3) hindering a direct evaluation of F3(0). Thus, we adopt two

approaches to extract F3(0): i) a dipole parametrization of F3(Q
2) in Q2 and fit to extract the value

at Q2 = 0 and ii) position space methods [3, 4].

3. Lattice Calculation

We extract the nEDM using the ensemble produced with N f = 2+1+1 twisted mass fermions

and the Iwasaki gauge action at lattice spacing of a ≃ 0.082 fm, pion mass 373 MeV and a spatial

lattice extent of L/a = 32, and referred to as B55.32. In total we sampled over 4623 configurations,

enabling us to reach high accuracy and to provide a reliable benchmark for the different methods.

4. Topological Charge

We extract the field theoretic topological charge Q =
∫

d4xq(x) , with an O(a4) improved

(lattice) definition for q(x) and damp the UV fluctuations using cooling and the gradient flow [7].

In addition we use the Wilson, Symanzik tree-level improved and Iwasaki actions for smoothing.

Both techniques [5, 6] provide similar results on purely topological observables with equivalence

realized by a rescaling between the gradient flow time τ and the number of cooling steps nc [5, 6].

Based on Ref. [7] we read F3/2mN at a value of τ = t/a2 that satisfies the equality
√

8t ≈ 0.6fm.

This corresponds [4] to τ(nc) of 6.7(20) for Wilson, 7.1(30) for Symanzik tree-level improved and

6.3(50) for the Iwasaki action.

5. Results for F3(0)

The first step towards the evaluation of F3(0) is the extraction of the phase α1. We use the

various definitions for Q (cooling/gradient flow with different smoothing actions) to extract α1.

Using Q measured via the gradient flow with the Iwasaki action yields α1 = −0.217(18) with

plateau setting in at t f/a > 8 (we set ti = 0) [4]. We subsequently use the values of α1 in Eq. (2.5)

in order to evaluate F3(0) with the different momentum treating techniques.

3
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5.1 Dipole Fit

A technique to extract F3(0) from Eq. (2.5) is the parametrization of the Q2 dependence of

F3

(

Q2
)

and then fitting to determine F3(0) using the dipole form F3

(

Q2
)

= F3(0)/
(

1+Q2/m2
F3

)2
.

Hence, we compute F3(Q
2) for a sequence of values of the momentum transfer, Q2 = 2mN

√
EN −mN ,

with the spatial components Qi taking all possible combinations of Qi/(2π/L) ∈ [0,±4] (and all

permutations thereof). We perfrom the calculation at three source-sink separations t f = 10a,12a

and 14a. We report results for t f = 12a since these are fully consistent with those for t f = 14a. In

the left panel of Fig. 1 we show an example for the combination of ratios leading to the extraction

of F3(Q
2). This corresponds to momentum transfer Q2 ≃ 0.17GeV2 and Q extracted via gradi-

ent flow with the Iwasaki action. F3(Q
2) is extracted via a constant fit within the plateau region

t/a ∈ [3,9]. In order to compute the error, we first calculate F3 and the associated jackknife error

dF3 by employing the mean value for α1. We, then, recompute F ′
3 using α1

max = α1 +dα1, where

dα1 is the jackknife error of α1. The final error on F3 is computed by combining ∆F3 = F3 −F ′
3

due to the variation in α1 with the jackknife error dF3 in quadrature, namely
√

(∆F3)2 +(dF3)2.

After determining F3(Q
2) at each value of Q2 we perform a dipole fit, treating F3(0) as a fit-

ting parameter. For Q extacted via gradient flow and the Iwasaki action we report an nEDM of

F3(0)/2mN =−0.041(12) e · fm.

5.2 Position space methods

The other momentum treating technique [3] is based on removing the momentum factor in

front of F3(Q
2) by position space methods. This involves the “continuum derivative technique”

and “momentum elimination technique” which are briefly explained in the next two subsections.

More information on these methods can be found in our longer write-up [4].

5.2.1 Continuum Derivative

One can remove the Qk dependence in front of F3(Q
2) by applying a continuum derivative with

respect to Q j such as limQ2→0
∂

∂Q j
Πk

F3
(~Q) = C(EN+mN)

4m2
N

δk jF3(0). We explicitly show the application

of the continuum derivative on the ratio in Eq. (2.3), which leads to the first term in Eq. (2.5); the

generalization on the other two ratios is straightforward. This gives

lim
Q2→0

∂
∂Q j

R
µ
3pt,Q (~q, t f , ti, t,Γk) = lim

Q2→0

∂
∂Q j

G
µ
3pt,Q(~q,t f ,ti,t,Γk)

G2pt(~q,t f ,ti,Γ0)
= lim

L→∞

∑
L/2−a

x=−L/2+a
ix jG

µ
3pt,Q(~x,t f ,ti,t,Γk)

G2pt(~q,t f ,ti,Γ0)
, (5.1)

where the 3-pt function G
µ
3pt,Q(~x, t f , ti, t,Γk) is expressed in position space. In finite volume this

expression approximates the derivative of a δ -distribution in momentum space,

a3 ∑
~x

ix jG
µ
3pt,Q(~x,Γk) =

1
V∑
~k

(

a3 ∑
~x

ix je
(i~k~x)

)

G
µ
3pt,Q(~q,Γk)

L→∞−→ 1

(2π)3

∫

d3~k ∂δ (3)(~k)
∂k j

G
µ
3pt,Q(~k,Γk).(5.2)

For finite L this implies a residual t-dependence G
µ
3pt,Q(~q, t f , ti, t,Γk) ∼ exp(−∆ENt) with ∆EN =

EN (~q)−mN . Only for L → ∞ we have ∆EN → 0.

Hence, the basic building blocks for this technique are the standard 2-pt functions and the con-

tinuum derivative-like 3-pt functions ∂G
µ
3pt,Q(~q, t f , ti, t,Γk)/∂Q j, ∂Gk

3pt(~q, t f , ti, t,Γ0)/∂Q j as well

4
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Figure 1: The ratios leading to F3(Q
2 ≃ 0.17GeV2) (left panel) and F3(0) via continuum deriva-

tive (right panel). Green squares, red circles and blue triangles correspond to source-sink separation of

t f /a = 10, 12, 14, respectively. Q is extracted using the gradient flow with the Iwasaki action.

as ∂Gk
3pt(~q, t f , ti, t,Γi)/∂Q j. These involve 3-pt functions in position space which are multiplied

by x j in the final Fourier transform according to Eq. (5.1). In addition, this method requires a

sufficiently large cutoff for the summation in Eq. (5.2) which needs to be checked explicitly.

We, therefore, compute the right ratios and extract F3(0)/2mN at a source-sink separation of

t f = 12a and check for ground state dominance at t f = 10a,14a. We fit the ratio to a constant in

the plateau region to extract F3(0) and use the procedure explained in Section 5.1 by employing the

mean value for α1 as well as α1
max =α1+dα1 in order to compute the associated statistical error on

F3. Since, the final result has a residual time dependence of the form ∼ exp(a(EN(~q)−mN) t/a) we

perform an exponential fit to extract F ′
3 and take the difference between F3 and F ′

3 as the systematic

error. On the right panel of Fig. 1 we show results for the combination of continuum-like derivatives

of ratios leading to the extraction of F3(0). The results are produced with Q extracted using the

gradient flow with the Iwasaki action. We fit within the plateau range t/a ∈ [4,8] yielding a value

of F3(0)/2mN =−0.042(7)(3) e · fm.

5.2.2 Momentum Elimination

In this method we start with a fit to the plateau in Eq. (2.5) and remove the time depen-

dence. For simplicity we focus on the on-axis momenta, e.g. ~q = (±Q,0,0)T . We average over

all momentum directions and index combinations according to Eq. (2.5) for a given Q-value. We

denote the corresponding fitted ratios by Π(Q). Subsequently, we apply a Fourier transform on

Π(Q) and obtain Π(y) in position space by imposing a cutoff Qmax. We exactly antisymmetrize [4]

Π(y) → Π(n) with n = y/a and Fourier transform it to continuous momentum space with Π(k) =
[

eiknΠ(n)
]

n=0,N/2
+2i∑

N/2−1

n=1 Π(n)sin (k ·n) and define the expressions k̂ ≡ 2sin
(

k
2

)

and Pn

(

k̂2
)

=

Pn

((

2sin
(

k
2

))2)
= sin(nk)/sin

(

k
2

)

. This leads to Π(k̂)−Π(0) = i∑
N/2−1
n=1 k̂ Pn

(

k̂2
)

Π(n). The func-

tion Pn

(

k̂2
)

is related to Chebyshev polynomials of the second kind and it is analytic in (−∞,+4),

allowing to evaluate Π(k̂) at any intermediate value. Dropping the factor k̂ in the above expression

by differentiating, we obtain F3(k̂
2)/2mN = i∑

N/2−1

n=1 Pn(k̂
2)Π(n) without explicit momentum fac-

tors. This expression can be computed exactly on the lattice up to the cutoff in the initial Fourier

transform resulting in a smooth curve for F3(Q
2).

We can extend the approach to arbitrary sets of off-axis momentum classes M(Q,Q2
off) =

5
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standard method

F3(Q
2 = 0)/(2mN )

momentum elimination
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F
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m
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)
[e
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m
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0.025

0
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-0.075
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Figure 2: Results on nEDM using the momentum elimination method for source-sink separation t f = 12a.

{

~q |~q = {±Q,Q1,Q2} , Q2
1 +Q2

2 = Q2
off

}

where {±Q,Q1,Q2} denotes all permutations of ±Q,

Q1 and Q2. To combine the results for F3(Q
2) for different Q2

off–classes as a function of continuous

momenta Q2 = Q2(k̂,Q2
off) we need to consider an analytic continuation (k → iκ and k̂ → iκ̂ =

−2sinh
(

κ/2
)

) for classes with Q2
off > 0 to reach zero total momentum. This also affects Pn, i.e.

Pn

(

κ̂2
)

= sinh(nκ)/sinh
(

κ
2

)

. The final result is obtained by combining the results from several

sets of momentum classes M(Q,Q2
off) by taking the error weighted average of the separate results.

Using this method we calculate F3(0) using various definitions for Q. We analyze data for

two source-sink separations, namely of t f = 12a and t f = 14a, employing a general momentum

cutoff Q2 < 16 · (2π/L)2 and momentum classes with an off-axis momentum squared of up to

Q2
off ≤ 5 ·(2π/L)2. The red band in Fig. 2 shows the results for F3(Q

2)/(2mN) extracted at t f = 12a

with Q obtained via the gradient flow with the Iwasaki action. It is obtained as the error weighted

average over all sets of different off-axis momentum classes M(Q,Q2
off). As required, the band

reproduces the red points which are the results obtained using plateau method at each Q2 value.

Fig. 2 yields F3(0)/2mN =−0.082(21) e · fm.

6. Conclusions

The nEDM is computed using N f=2+1+1 twisted mass fermions simulated at a pion mass

of 373 MeV and lattice spacing of a ≃ 0.082 fm employing a total of 4623 measurements. We

observe [4] that different momentum treating techniques give similar results, with those extracted

from the momentum elimination tending to have slightly larger absolute values with larger errors.

This resembles data obtained for the isovector magnetic form factor [3]. Results extracted using

different actions to smooth the gauge links entering the computation of the topological charge

yield overall consistent results [4]. Given that the simulations used the Iwasaki gauge action, we

present as our final value for the nEDM the value extracted when the Iwasaki action is employed

to obtain Q. As systematic error we take the difference between the mean values obtained when

cooling and the gradient flow are used to determine Q. Our final result is, thus, F3(0)/(2mN) =

6
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Figure 3: F3(0)/(2mN) versus the pion mass squared (m2
π). Our results are shown with a red asterisk. We

also show results for N f=2+1 domain wall fermions [9] and F3(0) obtained with the usual parametrization

in Q2 (blue squares) as well as results for N f=2 Clover fermions [10] extracted with the method of the

background electric field (green triangles). All errors shown are statistical. A value determined in chiral

perturbation theory is shown with the black triangle [11].

−0.045(6)(1)e · fm and it is in good agreement with older investigations [4] as this is demonstrated

in Fig. 3. Using the experimental upper bound |~dN |= 2.9×10−13e · fm we find a maximum value

of θmax = 6.4(0.9)(0.2)× 10−12. Further information on this work can be found in our longer

write-up [4].
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