
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
5
0

Analytic continuation of finite density QCD with
heavy quarks in the strong coupling region

Shinji Ejiri
Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
E-mail: ejiri@muse.sc.niigata-u.ac.jp

Hiroshi Yoneyama∗

Department of Physics, Saga University, 840-8502 Saga, Japan
E-mail: yoneyama@cc.saga-u.ac.jp

Complex nature of finite density QCD with heavy quarks in the strong coupling region is studied.
For this purpose, we consider the effective potential as a function of Polyakov line, and study
thermodynamic singularities and associated Stokes boundaries in the complex chemical potential
plane. We also perform an explicit analytic continuation of the first order transition and crossover
lines in the complex µ plane.

The 33rd International Symposium on Lattice Field Theory
14 -18 July 2015
Kobe International Conference Center, Kobe, Japan*

∗Speaker.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:ejiri@muse.sc.niigata-u.ac.jp
mailto:yoneyama@cc.saga-u.ac.jp


P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
5
0

Analytic continuation of finite density QCD with heavy quarks Hiroshi Yoneyama

1. Introduction

In this talk, we discuss the phase structure in the quark complex chemical potential (µ) plane
of the Polyakov line model, which is an effective theory of finite density QCD with heavy quarks in
the strong coupling region. The purpose of studying in the complex µ plane is twofold. One is that
the Lee-Yang zeros [1, 2, 3], the edge singularities and the Stokes boundaries are deeply associated
with the phase structures, and may provide useful information of the QCD critical point [4, 5, 6].
The other concerns the validity of the imaginary chemical potential method used in the Monte
Carlo simulations [7, 8, 9, 10, 11, 12, 13, 14, 15, 16], which relies on the analytic continuation in
the complex µ plane.

In the space of parameters associated with the hopping parameter, the gauge coupling and µ ,
this model reveals an interesting structure involving first order phase transition lines, crossovers
and critical endpoints. To discuss their complex nature, we calculate the effective potential as a
function of the Polyakov line, adopting a variational method based on the Legendre transformation
in the mean field framework. By extending µ to the complex plane, we investigate thermodynamic
singularities, the edge singularities and the associated Stokes boundaries. Our study may hopefully
provide a useful view of the expected QCD critical point.

In the following section, the effective potential is calculated. In Sect. 3, we study the model
in the complex µ plane. Critical endpoint as a singularity, the edge singularity, crossover and
Stokes boundaries are discussed. The first order phase transition line is analytically continued to
the complex plane. Conclusions are given in Sect. 4.

2. Effective potential

The Polyakov line model, which is an effective theory of finite temperature and finite density
QCD in the strong coupling region at the leading order in the hopping parameter expansion, is
defined by

Z =
∫

[dU ]e−S, (2.1)

S = −βp ∑
x,x′

d

∑
i=1

Tr UxTr U†
x′ + c.c.−κ ∑

x

(
eµTr Ux + e−µTr U†

x
)
, (2.2)

where βp and κ are two parameters defining the model, and the µ is chemical potential. The space
dimensionality d is fixed to 3 throughout the calculations. In this report we use the mean field
theory based on the variational method in terms of the Legendre transformation by introducing two
variational parameters K and K̂ to the partition function1 ;

Z =
∫

[dU ] exp

[
βp ∑

x,x′

d

∑
i=1

Tr UxTr U†
x′ + c.c.−K ∑

x
TrUx − K̂ ∑TrU†

x

]
× exp

[
(h+K)TrUx +(ĥ+ K̂)TrU†

x
]
, (2.3)

1Greensite and Splittorff [17] has investigated the model using the mean field method in the different framework
from ours and found that its phase diagram agrees fairly well with that of Monte Carlo simulations [18].
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where h = κeµ and ĥ = κe−µ . Defining a partition function characterize by K and K̂ with the
site-independent measure on a Ns-site lattice

ZK,K̂ ≡
(

zK,K̂

)Ns
, zK,K̂ =

∫
[dU ]e(h+K)TrU+(ĥ+K̂)TrU†

, (2.4)

Z is interpreted as an expectation value

Z = 〈exp

[
βp ∑

x,x′

d

∑
i=1

Tr UxTr U†
x′ + c.c.−K ∑

x
TrUx − K̂ ∑TrU†

x

]
〉K,K̂ZK,K̂ , (2.5)

where the expectation value 〈·〉K,K̂ specified by K and K̂ is taken with respect to Eq. (2.4). Appli-
cation of the Jensen’s inequality 〈eA〉 ≥ e〈A〉 to Eq. (2.5) leads to an inequality concerning the free
energy density f = −(1/Ns) logZ

f ≤ fK,K̂ , (2.6)

where fK,K̂ is an approximate free energy density

fK,K̂ ≡− logzK,K̂ −βpd
(
〈TrU〉K,K̂〈TrU†〉K,K̂ + c.c.

)
+K〈TrU〉K,K̂ + K̂〈TrU†〉K,K̂ . (2.7)

The parameters K and K̂ are fixed so as to minimize fK,K̂ as the best approximation, and conse-
quently, we have

fK̄, ¯̂K = − logzK̄, ¯̂K +
1

2βpd
K̄ ¯̂K, (2.8)

where

K̄ = 2βpd 〈TrU†〉K̄, ¯̂K , ¯̂K = 2βpd 〈TrU〉K̄, ¯̂K . (2.9)

In order to have the effective potential Ω(M) as a function of expectation value of M = 〈Tr U〉
through the Legendre transform of fK̄, ¯̂K , we introduce an “external field" he conjugate to M so that

∂ fK̄, ¯̂K

∂he
= −M. (2.10)

Inverting Eq. (2.10) to obtain he(M), fK̄, ¯̂K is Legendre-tranformed to Ω(M)

Ω(M) = fK̄,2Mβpd(he(M))+he(M)M, (2.11)

where

∂Ω(M)
∂M

= he. (2.12)

Fig. 1 indicates, as a function of βp, the expectation values of Tr U and Tr U†, the former is
identified as a global minimum of Ω(M) satisfying he = 0 in Eq. (2.12), and the latter from the
corresponding ¯̂K/(2βpd). It is seen that a first order phase transition occurs at βp = 0.12579. In
Fig. 2, the first order phase transition lines and the critical endpoints are shown for κ = 0.02 and
0.05 in µ −βp plane. As κ goes up, the first order phase transition line shrinks and disappears at
(µ,βp) ≈ (0,0.12068) for κc ≈ 0.05905. This phase structure is in agreement with that in [17].
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Figure 1: Expectation values of Tr U and Tr U† as a function of βp. κ = 0.02 and µ = 1.2.
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Figure 2: Phase diagram in µ −βp plane. First order phase transition lines are shown for κ =0.02 (red) and
0.05 (blue). Black filled symbol indicates the critical endpoints.

3. Complex µ plane

3.1 Singularities

In this section, we discuss the nature in the complex µ plane. The singularity occurs when the
global minimum of Ω(M) becomes unstable, i.e., the followings are satisfied

∂Ω(M)
∂M

= 0,
∂ 2Ω(M)

∂M2 = 0, (3.1)

which are equivalent to

he(M) = 0,
∂he(M)

∂M
= 0 (3.2)

in our formulation. For the equality on the right hand side in Eq. (3.2), we use an explicit expression
for ∂he/∂M

∂he

∂M
=

1

〈(Tr U)2〉c

[(
2βpd〈 Tr U Tr U†〉c −1

)2 − (2βpd)2〈(Tr U)2〉c〈(Tr U†)2〉c

]
, (3.3)

where

〈AB〉c ≡ 〈AB〉K̄,2Mβpd −〈A〉K̄,2Mβpd〈B〉K̄,2Mβpd . (3.4)
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Fig. 3 indicates the locations of the singular points as a solution to Eq. (3.2) in the complex
µ plane for κ = 0.02. The left edge of the plots at µ = 1.6709 ≡ µE (βp = 0.12122) corresponds
to the endpoint of the aforementioned first order phase transition line in Fig. 2. For Re µ > µE ,
a complex conjugate pair appears as the edge singularities corresponding to different value of βp

(0.117 ≤ βp ≤ 0.12122). A fit to the upper half part of the singular points in Fig. 2 give Im µ ∝
Re (µ −µE)3/2.

Moving away of the singularities from the real axis for Re µ > µE causes a crossover phe-
nomenon on the real µ axis. In agreement with what was shown in [6], it turns out that the location
of the crossover, which is measured as a peak of the susceptibility χ associated with the Polyakov
loop

χ ≡ 1/

(
∂ 2Ω(M)

∂M2

)∣∣∣∣
M̄

, (3.5)

agrees with the real part of the location of the singularity in the complex µ plane.
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Figure 3: Locations of the singular points for κ = 0.02 in the complex µ plane. The critical point is located
at the left edge of the plots (µ = 1.6709 ≡ µE ).

3.2 Stokes boundaries

For each singular point, an associated cut, the Stokes boundary, is connected to it in the com-
plex µ plane. To locate where it is, we perform the analytic continuation of the global minimum
in the complex µ plane. For this, setting µ −µE = ρeiθ and varying θ from 0 to π for every fixed
value of ρ , we trace the movement of the global minimum as was done in [6]. In the course of vari-
ation, a jump of the global minimum occurs at a point where the real part of the potential Re Ω(M)
satisfies the following

Re Ω(M1) = Re Ω(M2), (3.6)

where M1 and M2 are the location of the two different global minima analytically continued from
those on the real axis. In Fig. 4, the behaviors of the Stokes boundaries in the neighborhood of µE

are shown. For βp = 0.12123, the Stokes boundary goes upright (ϕ = π/2) from the origin (µ =
µE). As βp deviates from βE , the singularity moves away from the real axis, and corresponding
Stokes boundary emanates from it with slightly increasing ϕ .

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
5
0

Analytic continuation of finite density QCD with heavy quarks Hiroshi Yoneyama

J
J
J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

Reμ -μ
E

Im μ

Figure 4: Behaviors of the Stokes boundaries for κ = 0.02. Filled circles (black) are singular points for
three values of βp, 0.12123(= βE), 0.12 and 0.118, and the Stokes boundary emanates from each of them.

3.3 Analytic continuation of the first order phase transition line

In dealing with the sign problem in lattice simulations of finite density QCD, the imaginary
chemical potential method relies on the validity of the analytic continuation from the real µ axis to
the imaginary one. In order to explicitly perform the analytic continuation, we study how the first
order phase transition line on the real µ axis persist in the complex plane. For this purpose, we
trace the global minimum of Ω(M) in the complex plane as done in the previous subsection. With
the parametrization µ = ρeiθ , we vary the value of ρ for a fixed value of θ , and search a location
in the complex µ plane where a jump of the global minimum occurs. Fig. 5 indicates the first order
phase transition lines in the ρ −βp plane for several fixed θ values in the region of 0 ≤ θ ≤ π/2,
where κ is fixed to 0.05. It is found that the first order phase transition line varies smoothly from
the real axis (θ = 0) to the imaginary one (θ = π/2). Monotonically decreasing curve at θ = 0
(real µ axis) gradually turns into increasing one as θ increases, and for θ = π/4, it becomes almost
constant, suggesting a behavior of the first order phase transition surface as βp(µ) ∝ Re µ2.
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Figure 5: Analytic continuation of the first order phase transition line as a function of ρ in the vicinity of
the origin, where µ = ρeiθ . κ = 0.05. Seven values of θ are chosen; 0,π/10,2π/10,π/4,3π/10,4π/10
and π/2 (from bottom to top). The black filled symbol for θ = 0 indicates the critical endpoint on the real
µ axis.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
5
0

Analytic continuation of finite density QCD with heavy quarks Hiroshi Yoneyama

4. Remarks

We investigated the phase structure in the complex chemical potential plane of finite density
QCD with heavy quarks in the strong coupling region by adopting the Polyakov line model. We
considered the effective potential as a function of Polyakov line, and studied thermodynamic sin-
gularities and associated Stokes boundaries in the complex chemical potential plane. By explicitly
tracing the global minima, we also performed an analytic continuation of the first order transi-
tion lines and found that the transition line is smoothly continued from the real µ axis to the pure
imaginary axis.

Monte Carlo calculations of the effective potential as a function of the Polyakov line of QCD
with heavy quarks was done in the literature [19]. Its extension to the complex µ and the compari-
son with the results presented here will be presented elsewhere[20].
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