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1. Introduction

Understanding of QCD phase diagram at finite temperature (T ) and real quark chemical po-

tential (µR) is one of the interesting and important subjects in the nuclear and elementary particle

physics. If we can obtain the QCD phase diagram from the first-principle calculation, there is no

unclearness. However, such first principle calculation which is the lattice QCD simulation has the

sign problem at finite µR. Even if several methods to circumvent the sign problem are used, we can

not reach the µR/T > 1 region. Therefore, several effective model calculations are performed so

far. Figure 1 shows our current expectation of the QCD phase diagram.

In the study of the QCD phase diagram, the confinement-deconfinement transition plays a

crucial role. However, our current understanding of the deconfinement transition is very limited.

At least in the heavy quark mass limit, the Polyako-loop which is the gauge invariant holonomy

for the imaginary time circle becomes the exact order parameter of the deconfinement transition

because the center (Z3) symmetry is directly related with the decofinement transition in this case.

Although, the Polyakov-loop is no longer the exact order parameter in the finite quark mass regime,

the Polyakov-loop is usually treated as the approximate order parameter of the deconfinement tran-

sition, and the QCD phase diagra is drown.

In this talk, we discuss the new determination of the deconfinement (pseudo) critical tempera-

ture by using the analogy of the topological order which is explained in Sec. 2. Also, we shows the

expected QCD phase diagrams at complex chemical potential because we must extend the chemical

potential to complex from real when we consider finite µR region in our present determination of

the deconfinement (pseudo) critical temperature.
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Figure 1: Schematic figure of our current expectation of the QCD phase diagram at finite µR and µI, respec-

tively. Solid lines represent the first order transition line.
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2. Free energy degeneracy and deconfinement transition

In the imaginary-time formalism, the U(1) flux can be inserted to the closed loop of the

imaginary-time direction and then the vector potential is induced by the U(1) flux. Since the

appearance form of the vector potential and the imaginary chemical potential is similar in the ac-

tion, the imaginary chemical potential can be interpreted as the Aharonov-Bohm phase [1]. In this

interpretation, we may use the discussion of the topological order discussed in the condensed mat-

ter physics [2]. It should be noted that actual applications to zero temperature QCD was already

discussed in Ref. [3].

In Ref. [3], the author consider the torus T 3 at zero temperature. There are introduce three

adiabatic operations: (a) Insert the U(1) flux to spatial closed loops, (b) exchange i-th and i+1-th

quarks and (c) move a quark along loops. Commutation relations of the operation (b) and (c) follw

the Braid group, and the Aharonov-Bohm effect determines the commutation relations of those

operations with operation (a). If quarks are deconfined, above operations become non-commutable

because quarks have the fractional charge. On the other hand, commutation relation is commutable

if quarks are confined because physical states are characterized by hadron degrees of freedom with

integer charges. Therefore, if there is only one vacuum in the deconfined phase, it is inconsistent

with the non-commutability of the operations and thus vacuum degeneracy should exist.

At finite T , the topological order cannot be well defined, because thermal states are constructed

by a mixture of pure states with the Boltzmann factor, and then we cannot operate (a), (b) and

(c), adiabatically. Nevertheless, the RW periodicity shows significantly different behaviors in the

confined and deconfined phases 1. It is induced by the nontrivial appearance of the RW periodicity

in the deconfined phase. This fact suggests that we can distinguish the confined and deconfined

phases at µI = 0 from the non-trivial free energy degeneracy of the effective potential at θ = π/3.

Actually, we can have degenerated free energy minima at θ = π/3 above TRW, but not below TRW.

This degeneracy seems similar to the vacuum degeneracy in zero T systems used in the topological

order and the analogy can be found; the response of hidden local minima by the flux insertion via

µI tells us the non-trivial degeneracy of the free energy minima. Therefore, we propose that TRW is

the pseudo-critical temperature of the confinement-deconfinement transition.

It should be noted that the present definition and the standard definition determined by using

the Polyakov-loop are consistent in the infinite quark mass limit where the Polyakov-loop is the

exact order-parameter of the confinement-deconfinement transition. Therefore, we can find the

relation TD = TΦ = TRW where TΦ is the critical temperature determined by the susceptibility of

the Polyakov-loop and TD is the deconfinement critical temperature. When the dynamical quarks

are taken into account, TΦ changed to the pseudo-critical temperature. The upper bound of the

pseudo-critical temperature may be determined by the appearance of local minima of the effective

potential at µI = 0 in the Re Φ - Im Φ plane. We call it TZ3
. From the lattice QCD and effective

model calculations, we can have the relation TΦ ≤ TRW ≤ TZ3
. The Polyakov-loop is no longer

the exact order parameter and thus the determination of TD is not unique, but TRW is uniquely

determined. Thus, TRW which agrees with TD in the infinite quark mass limit is unambiguously

determined in the lattice QCD and effective models and provides a reasonable value as TD in the

1For example, this fact can be seen from the comparison between the perturbative one-loop calculation [4, 5] and

the strong coupling limit of QCD with the mean field approximation [6, 7] at finite imaginary chemical potential.
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case with the dynamical quark. If we adopt TRW as TD, we can say that the deconfinement transition

is the topological phase transition.

3. QCD phase diagram at complex chemical potential

We now discuss the µR-dependence of the deconfinement pseudo-critical temperature defined

by TRW. We here give an model independent argument based on the perturbative expansion of the

effective potential at finite µR as a first step to investigate the µR-dependence of the RW endpoint.

It should be noted that non-perturbative model approaches have several difficulties. One of the

promising effective models is the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) model [8],

but the PNJL model also has the model sign problem at finite µR [9]. There are some proposals

to circumvent the model sign problem, for example the complex integral path contour method [10,

11, 12] based on the Lefschetz thimble [13, 14, 15] and the complex Langevin method [16, 17].

Unfortunately those approaches cannot be directly used at finite complex chemical potential at the

present because we cannot maintain the RW periodicity and some other desirable properties of

QCD.

The effective potential with small µR can be expanded up to µ2
R order as

V (T,µR,µI) = V (T,0,µI)−
(µR

T

)

(T nq(µR,µI)|µR=0)

−
1

2

(µR

T

)2 d[T nq(µR,µI)]

dµR/T

∣

∣

∣

µR=0
+ O

(

(µR/T )3
)

, (3.1)

where

T
dnq

dµR/T

∣

∣

∣

µR=0
= T

dnq

d(iµI/T )

∣

∣

∣

µR=0
=−iT

dnq

dθ

∣

∣

∣

µR=0
. (3.2)

Equation (3.2) is real. The second term in r.h.s. of Eq. (3.1) is pure imaginary.

Here, we consider the confinement and deconfinement configurations. We call the configura-

tion at (TRW − ε) confinement configuration which is labeled as C−ε where ε is a infinitesimal real

positive value. Also, we call the configuration at (TRW + ε) deconfinement configuration which is

labeled as C+ε . By comparing Re V with C−ε to that with C+ε in the ε → 0 limit, we can distin-

guish whether TRW decreases or increases if we can estimate the third term of r.h.s. of Eq. (3.1).

From the lattice QCD and effective model calculations [18, 19], we can estimate that Eq. (3.2) is

negative below TRW and it becomes moderate above TRW. The µ2
R correction term makes Re V

with C−ε higher than that with C+ε because the µ2
R correction term is then positive with C+ε . This

fact means that the first-order TRW decreases with increasing µR at least in the small µR region.

This behavior is consistent with the decreasing behavior of the pseudo-critical temperature of the

deconfinement transition defined by using usual determinations which consider the Polyakov-loop;

for example, see Refs [8, 20, 21].

By taking into account our perturbative result and the symmetry argument, we can sketch

expected QCD phase diagrams at finite complex chemical potential. QCD phase diagrams expected

from the symmetry argument and our present perturbative calculations are summarized in Fig. 2.

Because of the RW periodicity, the phase structure should be periodic along the θ axis. The RW

transition line on the (T,θ) plane (µR = 0) may be connected with the first order phase transition

boundary on the (T,µR) plane. Two of the first order transition lines starting from the RW endpoint

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
5
1

Topological feature and phase diagram of QCD Kouji Kashiwa

RW transition surface

Chiral transition surface

Figure 2: Two possible schematic QCD phase diagrams at finite complex chemical potential. The left (right)

panel represents the correlated (uncorrelated) case between the chiral and RW transition surfaces.

have chiral transition natures and are referred to as the chiral transition lines [22]. Then, it is not

unreasonable to expect that the endpoint of the chiral critical line on the (T,θ) plane is connected

with the critical point on the (T,µR) plane. In this case, the first order phase boundary on the

(T,µR) plane forms a chiral transition surface in the (T,µR,θ) space, and connects the (T,µR)

plane and the (T,θ) plane. The RW transition line extends in the finite µR region and forms an

RW transition surface in the (T,µR,θ) space. The RW endpoint may reach T = 0 as shown in the

top panel of Fig. 2 or it may deviate from the chiral transition surface at some temperature. There

is the possibility that TRW line becomes smaller than the chiral critical surface at moderate µR and

finally becomes larger than the chiral transition surface.. It is deeply related with a strength of the

correlation between the chiral transition surface and the RW transition surface.

Another possibility is that the first order transition lines on the (T,θ) plane are separated from

the first order phase boundary on the (T,µR) plane, as shown in the bottom panel of Fig. 2. TRW

first decreases at small µR, but does not goes across the chiral transition surface. In this case, the

deconfinement transition represented by the RW endpoint on the (T,θ) plane has less relevance to

the first order phase boundary, which would be the chiral transition, on the (T,µR) plane. Therefore,

we can call this possibility uncorrelated case and the former possibility correlated case.

The QCD phase diagram at finite complex chemical potential may be related with the fol-

lowing subjects. (I) In Ref. [23, 24], the authors use experimental data to construct the canonical

partition function. Then, TRW at µR = 0 is used to clarify realized temperatures in experiments

through the Lee-Yang zero analysis [25, 26]. In the analysis, TRW at finite µR should be related

with zeros inside the unit circle on the complex quark fugacity plane. If so, there is the possibility

that we can strictly determine realized temperatures in experiments if we can systematically under-

stand the behavior of zeros. (II) The analytic continuation in QCD from the imaginary to the real

chemical potential is usually performed on the µ2 plane. In the continuation, we may miss some

information such as an inhomogeneous chiral condensate [27]. The analytic continuation on the
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complex chemical potential plane may restore such information missing.

4. Summary

We have proposed that the Roberge-Weiss endpoint provides a reasonable deconfinement tem-

perature. The imaginary chemical potential can be interpreted as the Aharonov-Bohm phase in-

duced by U(1) flux insertions and then the analogy of the topological order can be found. In the

deconfined phase, we can find the degeneracy free energy degeneracy, but we cannot find such non-

trivial structure of the free energy in the confined phase. This suggests that we can distinguish the

confined and deconfined phases at θ = µI/T = 0 from the appearance of the non-trivial degeneracy

of the effective potential. Then, TRW can be considered as the pseudo-critical temperature at µ = 0.

In this study, we have used the analogy of the topological order at finite T . The topological

transition does not have the usual order parameter, but the relation with an entanglement and topo-

logical entropies has been discussed in the condensed matter physics; for example, see Ref. [28].

In QCD, such a relation is not clear, but it is an interesting direction to investigate the topological

nature of the transition.

Using the perturbative expansion in terms of µR of the effective ptoential, we have investigated

the behavior of TRW at small µR and then the decreasing behavior of TRW is obtained. Based on these

results, we presented two scenarios of the QCD phase diagram at finite complex chemical potential.

First scenario has the strong correlation between the chiral and deconfinement transitions. The RW

endpoint at finite µR finally reaches the T = 0 point. Then, the critical point can become more

complex than the usual expectation since two more first order transition lines are connected at the

critical point. The second scenario is the uncorrelated case and then the RW endpoint is separated

from the chiral transition surface.

Since the complex chemical potential is related with the Lee-Yang zero analysis and also the

analytic continuation to the finite µR region, understanding the QCD phase diagram at finite com-

plex chemical potential may be important to the beam energy scan program in heavy ion collider

experiments, investigation of neutron star structures and so on.
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