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Complex Langevin simulations provide an alternative to sample path integrals with complex
weights and therefore are suited to determine the phase diagram of QCD from first principles.
Adaptive step-size scaling and gauge cooling are used to improve the convergence of our simula-
tions. We present results for the phase diagram of QCD in the limit of heavy quarks and discuss
the order of the phase transitions, which are studied by varying the spatial simulation volume.
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1. Introduction

Complex Langevin simulations [1-4] have recently become an active field of research with
the development of gauge cooling [5, 6] and the prospect of enabling studies of QCD with non-
vanishing chemical potential [7]. Here we report on our ongoing project studying the phase diagram
of QCD. A sketch of the expected phase diagram for QCD is shown in Figure 1. First principle
calculations are a crucial input for understanding the behaviour of strong interactions in heavy ion
collisions and in neutron stars.
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Figure 1: A scenario of the QCD phase diagram.

Before studying the QCD phase diagram of full QCD, we consider the heavy dense approxi-
mation of QCD (HDQCD) [4, 5, 8] as a first test and identify the necessary step to determine the
location and order of the phase transitions. Currently, we do not consider higher orders in the
hopping parameter expansion, as done in [9-11], since our final goal is to study QCD with fully
dynamical light quarks.

2. Complex Langevin simulation

Complex Langevin simulations are based on a stochastic process, which is achieved by an
update using simple matrix multiplication

Uµx(t + ε) = R(t)Uµx(t). (2.1)

The update matrix is composed of a deterministic drift and a stochastic term, and can be written as

R(t) = exp
[
iλ

(
−ε DU S+

√
ε η

)]
, (2.2)

where λ are the Gell-Mann matrices of SU(3) and DU S is the gauge derivative of the action. The
stochastic part is provided by Gaussian white noise η . We use Wilson’s plaquette action in the
gauge sector and include fermions by the logarithm of the fermion determinant, which in the limit
of heavy quarks can be written for one flavour as

detD(µ) = ∏
~x

det
(

1+h eµ/T P~x

)2
det

(
1+h e−µ/T P−1

~x

)2
(2.3)
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with h = (2κ)Nτ . Recent work [12-15] has shown that the complex logarithm does not necessarily
spoil Complex Langevin dynamics, as long as the quark masses are sufficiently large. Due to the
complex nature of the QCD path integral in the presence of finite quark density, the gauge links
are an element of the gauge group SL(3,C). We use adaptive step-size scaling [16] and adaptive
gauge cooling [5, 6] to avoid large excursions into the non-compact extension of SU(3), which
would invalidate the justification of the approach [17, 18]. To check our simulations, we monitor
the ’unitnorm’ during the Langevin evolution,

d = Tr
(
UU†− I

)2
, (2.4)

which is a measure of the distance to the SU(3) manifold and a good indicator of stability of our
runs.

3. Numerical setup

We study the phase diagram of heavy dense QCD using two flavours of heavy quarks and work
at a fixed lattice spacing (fixed β ). To improve our previous results [19, 20] we have extended our
simulations to cover two additional spatial volumes, i.e. 63 and 103. We perform a simultaneous
scan in the chemical potential and the temperature by varying µ and Nτ . The range of our sim-
ulation parameter can be found in Table 1. Our simulations have been extended to a maximum

β = 5.8 N f = 2 V = 63, 83, 103

κ = 0.04 µ = 0.0−3.2 Nτ = 2−32
a∼ 0.15fm T = 670−42MeV

Table 1: Summary of simulation parameters, where the chemical potential is given in lattice units. The
lattice spacing has been determined using the Wilson flow in [7, 21].

Langevin time of 500, of which we discarded the first 100 to remove thermalisation effects. We
use a step-size of ε ∼ 10−4 and apply adaptive step-size scaling to compensate for large forces
in the Langevin drifts. We determine observables every 10−2 Langevin time. Configurations are
typically decorrelated when separated by approximately 10−100 measurements, depending on the
actual value of the spatial volume, chemical potential and temperature. For each setup we have at
least 4000−400 decorrelated configurations. The auto-correlation has been determined using the
algorithm described in [22].

4. Results

Figure 2 shows the result for the Polyakov loop as a function of temperature T and the chemical
potential µ for the spatial volume of 83. The temperature axis is shown in units of MeV using the
lattice spacing of a∼ 0.15fm, which has been obtained using the Wilson flow [7, 21]. The chemical
potential is shown in units of the quark mass, which for HDQCD can be simply written as

mq ≡− ln(2κ) = 2.53∼ µc. (4.1)
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Figure 2: The Polyakov loop as function of temperature T and chemical potential µ for the 83 ensembles.
Each black dot represent the result of a Complex Langevin simulation.

The expected critical chemical potential µc is directly related to the quark mass in the heavy dense
approximation of QCD. The Polyakov loop is an excellent quantity to study both transitions, i.e. the
deconfinement transition and the transition to higher densities. An intrinsic lattice artefact is visible
at large chemical potentials, which can be understood by Pauli blocking. At high enough densities
all lattice sites are filled with fermions and no additional fermion can be added. The Polyakov loop
drops to zero in this unphysical regime, since the system is effectively equivalent to a pure gauge.
The fermion density on the other hand shows saturation for high densities. Figure 2 also shows
a cubic interpolation of the data, represented by the coloured surface connecting the individual
results to guide the eye. Figure 3 shows the equivalent plot for the Polyakov loop susceptibility as
a function of µ and T for our intermediate volume of 83. This plot provides a good representation
of the phase boundary of HDQCD. The broadness seen for the deconfinement transition is caused
by the limited resolution in the temperature direction, since the temporal extent is naturally an
integer. Varying the gauge coupling and thereby the lattice spacing will allow us to probe different
temperatures and study also the behaviour towards the continuum limit.

To study the transitions in more detail, we have simulated HDQCD with three different vol-
umes, i.e. 63,83 and 103. Figure 4 shows the susceptibility of the fermion density n, where the
latter is defined as

n =
1

NτN3
s

∂ lnZ
∂ µ

. (4.2)

The fermion density and its susceptibility provide a very clear signal for the transition to higher
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Figure 3: The Polyakov loop susceptibility as function of T and µ in the same style as Figure 2.

densities. An appoximate symmetry is visible in Figure 4 around the critical chemical potential µc,
which can be understood by considering a symmetry between particles and holes [23]. At half-
filling, which is reached at µc, the susceptibility drops and shows a symmetric behaviour on both
sides within statistical fluctuations. The upper panel of Figure 4 depicts the transition for one of
our larger temperatures of T ∼ 335MeV, whereas the lower panel shows the situation for a smaller
temperatures of T ∼ 167MeV.

5. Conclusions and Outlook

Here we presented an update of our ongoing project to study the phase diagram of (heavy
dense) QCD from first principles using Complex Langevin simulations. We find clear signals for
the deconfinement transition and the transition to higher density. Currently, we are extending our
simulations to even larger volumes around the transition, to better identify the order of the tran-
sitions. Varying the gauge coupling will allow us to improve the resolution of the deconfinement
transition and study the continuum limit. With this study we have presented the necessary steps and
methods to study the phase diagram of fully dynamical QCD using staggered quarks [7], which we
plan to study next.
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Figure 4: The fermion density susceptibility as a function of the chemical potential for two different tem-
poral extents Nt = 4 (upper) and Nt = 8 (lower). The volumes are shown in different colours.

Acknowledgements: We are grateful for the computing resources made available by HPC
Wales. Part of this work used the DiRAC BlueGene/Q Shared Petaflop system at the University of
Edinburgh, operated by the Edinburgh Parallel Computing Centre on behalf of the STFC DiRAC
HPC Facility (www.dirac.ac.uk). This equipment was funded by BIS National E-infrastructure
capital grant ST/K000411/1, STFC capital grant ST/H008845/1, and STFC DiRAC Operations
grants ST/K005804/1 and ST/K005790/1. DiRAC is part of the National E-Infrastructure. We
acknowledge the STFC grant ST/L000369/1, the Royal Society and the Wolfson Foundation. FA is
grateful for the support through the Brazilian government programme “Science without Borders”
under scholarship number BEX 9463/13-5.

References

[1] G. Parisi, Phys. Lett. B 131 (1983) 393.

[2] J. R. Klauder, Acta Phys. Austriaca Suppl. 25 (1983) 251.

[3] J. R. Klauder, Phys. Rev. A 29 (1984) 2036.

[4] G. Aarts and I. O. Stamatescu, JHEP 0809 (2008) 018.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
5
5

Insights into the heavy dense QCD phase diagram using Complex Langevin simulations Benjamin Jäger

[5] E. Seiler, D. Sexty and I. O. Stamatescu, Phys. Lett. B 723 (2013) 213.

[6] G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty and I. O. Stamatescu, Eur. Phys. J. A 49 (2013) 89.

[7] D. Sexty, Phys. Lett. B 729 (2014) 108.

[8] I. Bender, T. Hashimoto, F. Karsch, V. Linke, A. Nakamura, et al., Nucl. Phys. Proc. Suppl. 26 (1992)
323.

[9] R. De Pietri, A. Feo, E. Seiler and I. O. Stamatescu, Phys. Rev. D 76 (2007) 114501

[10] M. Fromm, J. Langelage, S. Lottini and O. Philipsen, JHEP 1201 (2012) 042

[11] G. Aarts, E. Seiler, D. Sexty and I. O. Stamatescu, Phys. Rev. D 90 (2014) 11, 114505

[12] A. Mollgaard and K. Splittorff, Phys. Rev. D 88 (2013) 11, 116007

[13] K. Splittorff, Phys. Rev. D 91 (2015) 3, 034507

[14] J. Nishimura and S. Shimasaki, Phys. Rev. D 92 (2015) 1, 011501

[15] J. Greensite, Phys. Rev. D 90 (2014) 11, 114507

[16] G. Aarts, E. Seiler and I. O. Stamatescu, Phys. Rev. D 81 (2010) 054508.

[17] G. Aarts, F. A. James, E. Seiler and I. O. Stamatescu, Eur. Phys. J. C 71 (2011) 1756.

[18] G. Aarts, F. A. James, E. Seiler and I. O. Stamatescu, Phys. Lett. B 687 (2010) 154.

[19] G. Aarts, F. Attanasio, B. Jäger, E. Seiler, D. Sexty and I. O. Stamatescu, PoS LATTICE 2014 (2014)
200

[20] G. Aarts, F. Attanasio, B. Jäger, E. Seiler, D. Sexty and I. O. Stamatescu, Acta Phys. Polon. Supp. 8
(2015) 2, 405

[21] S. Borsanyi, S. Durr, Z. Fodor, C. Hoelbling, S. D. Katz, et al., JHEP 1209 (2012) 010.

[22] U. Wolff [ALPHA Collaboration], Comput. Phys. Commun. 156 (2004) 143 [Comput. Phys.
Commun. 176 (2007) 383]

[23] T. Rindlisbacher and P. de Forcrand, arXiv:1509.00087 [hep-lat].

7


