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The complex Langevin method has been attracting much attention as a solution to the sign prob-
lem since the method was shown to work in finite density QCD in the deconfined phase by using
the so-called gauge cooling procedure. Whether it works also in the confined phase with light
quarks is still an open question, though. In order to shed light on this question, we apply the
method to the chiral Random Matrix Theory, which describes the epsilon regime of finite density
QCD. Earlier works reported that a naive implementation of the method fails to reproduce the
known exact results and that the problem can be solved by choosing a suitable coordinate. In this
work we stick to the naive implementation, and show that a generalized gauge cooling procedure
can be used to avoid the problem.
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1. Introduction

The complex Langevin method (CLM) is a promising candidate of solutions to the sign prob-
lem, which occurs in studying various interesting systems such as QCD at finite density by Monte
Carlo methods. It may be viewed as an extension of the Langevin method or the stochastic quan-
tization for real action systems, which updates dynamical variables using the Langevin equation
[1]. Since the Langevin method does not rely on the probability interpretation unlike Monte Carlo
methods, it may be generalized to the case with a complex action [2, 3].

When one solves the Langevin equation in the case of complex action, the complex drift term
inevitably makes the dynamical variables of the system evolve into complex values even if they
are originally real. For the method to work nevertheless, the action and the observables have to be
extended to holomorphic functions of the complexified dynamical variables. In addition to this, it
was found that the probability distribution of the complexified dynamical variables should have a
fast fall-off in the imaginary directions [4, 5].

In the application of CLM to QCD at finite density, the drift term makes the SU(3) link vari-
ables evolve into SL(3,C) matrices. It can then happen that the link variables make long excursions
in the non-compact directions with large probability, which causes convergence to a wrong result.
In order to avoid this problem, the so-called gauge cooling was proposed [6]. This amounts to
performing a complexified SL(3,C) gauge transformation after each Langevin step in such a way
that one can reduce the unitarity norm, which measures the deviation of the link variables from
unitary matrices. Using this technique, the CLM was shown to work for QCD in the heavy dense
limit [6] or at sufficiently high temperature [7, 8]. Recently an explicit justification of the CLM
including the gauge cooling procedure was given by the present authors [9]. Since the advent of
this new technique, the CLM has been attracting much attention; see e.g., [10, 11, 12, 13, 14, 15].

In fact, when one tries to apply the CLM to finite density QCD at low temperature and with
light quarks, another problem is anticipated to occur [16, 17]. The nonzero quark chemical potential
breaks the anti-Hermiticity of the Dirac operator D, and causes the broadening of its eigenvalue
distribution. For quark chemical potential larger than a certain value, the eigenvalue distribution of
(D+m) with m being the quark mass becomes nonzero at the origin, and the diverging drift term
in the Langevin equation causes convergence to a wrong result [18]. The gauge cooling with the
unitary norm does not seem to cure this problem because the eigenvalue distribution is broadened
at nonzero quark chemical potential even if the link variables are unitary.

The purpose of this work is to develop a method which solves this fermionic singular-drift
problem. For that, we extend the idea of gauge cooling by introducing new types of norms written
in terms of the Dirac operator, which are sensitive to the problematic features of the eigenvalue
distribution. We test the method in the chiral Random Matrix Theory (chRMT), for which naive
implementation of the Langevin simulation fails in the light quark regime [16]. While the chRMT
does not have a gauge symmetry, it has U(N) global symmetries, which can be used to cure the
problem [9]. In ref. [19] the same problem was solved by using the polar coordinate, instead of
Cartesian, for the dynamical variables. In this work, however, we stick to the Cartesian coordinate
and test the proposed method, which can be applied to QCD and other cases in a straightforward
manner. We will show that reducing the new types of norm by applying the cooling procedure after
each Langevin step can indeed make the Langevin simulation converge to the correct results.
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2. Chiral Random Matrix Theory

We consider a chRMT for Nf quarks with degenerate mass m and the chemical potential µ ,
whose partition function is given by

Z =
∫

dΦ1dΦ2 [det(D+m)]Nf e−Sb . (2.1)

Here the dynamical variables are N×N general complex matrices1 Φk (k = 1,2), and the bosonic
action Sb is given by

Sb = 2N
2

∑
k=1

Tr(ΨkΦk) , (2.2)

where we have defined Ψk (k = 1,2) by

Ψk = (Φk)
† (2.3)

for later convenience. The Dirac operator D is defined by

D =

(
0 X
Y 0

)
, (2.4)

X = eµ
Φ1 + e−µ

Φ2 , (2.5)

Y =−e−µ
Ψ1− eµ

Ψ2 . (2.6)

At µ = 0, the Dirac operator is anti-Hermitian D† =−D, from which it follows that its eigenvalues
are purely imaginary. At µ 6= 0, this is not the case any more, and the eigenvalues become general
complex numbers. As interesting observables, we consider the chiral condensate Σ and the baryon
number density nB defined, respectively, by

Σ =
1
N

∂

∂m
logZ , nB =

1
N

∂

∂ µ
logZ . (2.7)

Note that the theory (2.1) as well as the observables (2.7) is invariant under the transformation

Φk→Φ
′
k = gΦk h−1 , Ψk→Ψ

′
k = hΨk g−1 , (2.8)

where g,h ∈ U(N).

3. New gauge cooling for solving the fermionic singular-drift problem

In the CLM, real variables have to be extended to complex variables in a holomorphic manner.
This amounts to removing the constraint (2.3) and treating Φk and Ψk (k = 1,2) as independent
variables. Then the symmetry is naturally complexified, and the invariance under (2.8) holds for

1The topological index ν can be introduced in our analysis by making the matrices Φk and Ψk rectangular as
N× (N +ν) and (N +ν)×N, respectively. The complexified symmetry (2.8) with g ∈GL(N,C) and h ∈GL(N +ν ,C)
can be used for gauge cooling in that case.
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g,h ∈ GL(N,C). The “gauge cooling” can be introduced as a procedure of making a complexified
symmetry transformation after each Langevin step so that the norm we define below is reduced.

Originally the gauge cooling was proposed to avoid the problem due to the long excursion in
the imaginary directions [4, 5], and for that purpose, the unitarity norm was introduced in QCD [6].
Analogously, in the chRMT we consider the norm

Nh =
1
N

2

∑
k=1

Tr
[{

Ψk− (Φk)
†
}†{

Ψk− (Φk)
†
}]

. (3.1)

In ref. [16], convergence to a wrong result was observed at small quark mass. It is understood
that this problem is caused by the diverging drift term due to the small eigenvalues of (D+m) [18].
According to this understanding, we should be able to cure the problem by using the gauge cooling
in such a way that small eigenvalues of (D+m) are suppressed. For that purpose, we introduce
new types of norms. The first one is given by

N1 =
1
N

Tr
[
(X +Y †)†(X +Y †)

]
, (3.2)

which measures the violation of the anti-Hermiticity of D. Reducing this norm makes the eigen-
value distribution of D narrower in the real direction, and thus the appearance of small eigenvalues
of (D+m) can be suppressed. The second one is defined by

N2 =
nev

∑
a=1

e−ξ αa , (3.3)

where ξ is a real parameter and αa are the real positive eigenvalues of M†M with M = D+m. The
sum in (3.3) is taken over the nev smallest eigenvalues of M†M. Since αa ≥ δ implies |λa|2 ≥ δ ,
where λa are the eigenvalues of M, reducing the norm N2 suppresses the appearance of small λa.

In order to avoid the long-excursion problem and the fermionic singular-drift problem at the
same time, we consider a linear combination of the norms Nh and Ni given by

Ni(r) = rNh +(1− r)Ni , 0≤ r ≤ 1 , (3.4)

where i = 1,2 and r is a tunable parameter. Note that the eigenvalue distribution of M is actually
invariant under the GL(N,C) transformation, and yet it is affected by the gauge-cooling procedure,
which is possible because the noise term respects only U(N).

4. Results

We have studied the chRMT (2.1) for N = 30,
√

Nµ = 2 and Nf = 2 by solving the discretized
complex Langevin equation. We have made 100000 steps of time-evolution with the step size
∆t = 5×10−5. This step size was small enough to avoid the runaway problem. The initial 20000
steps were discarded for thermalization, and the observables were measured every 200 steps.

The parameter r in (3.4) is chosen to be r = 0 for N1 and r = 0.01 for N2. These small
values of r turned out to be good enough to control (3.1) since the long excursion in the imaginary
direction is suppressed by the bosonic action (2.2) in the present case. The situation might be
different in QCD. The parameters used in (3.3) for the N2 norm are chosen as ξ = 300 and nev = 2.
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The gauge cooling procedure is performed similarly to the original proposal [6]. We calculate
the gradient of the norm with respect to the complexified transformation, and choose the magnitude
of the transformation parameter in such a way that the norm is maximally reduced. This procedure
is repeated 10 times after each Langevin step.
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Figure 1: The chiral condensate (Left) and the baryon number density (Right) obtained by the CLM with or
without gauge cooling are plotted against m̃ = mN. The solid lines represent the exact results.

In Fig. 1 we show our results for the chiral condensate and the baryon number density obtained
by the CLM with or without gauge cooling. The CLM without gauge cooling fails for mN .
10 as was reported in ref. [16], whereas the CLM with gauge cooling using new types of norm
successfully reproduces the exact results even in the light quark regime.

In Fig. 2 we show the eigenvalue distribution of (D+m) obtained with m̃ = mN = 3, for which
the CLM works only with the new gauge cooling. Let us recall that the eigenvalues close to zero
make the drift term large in the Langevin equation, which invalidates the argument for justifying
the CLM [18]. Without gauge cooling, we do find that the origin is covered with the cloud of
eigenvalues completely, whereas with gauge cooling, that is somehow avoided. It is interesting that
the problem is avoided in different ways for the two types of norm. The gauge cooling with N1

makes the eigenvalue distribution narrower in the real direction, whereas the gauge cooling with
N2 repels the eigenvalues from the vicinity of the origin.

Note that the eigenvalue distribution of (D+m) is not a holomorphic quantity, and hence the
results shown in Fig. 2 do not represent the eigenvalue distribution of (D+m) that can be defined in
the chRMT, which is actually complex. (See, for instance, ref. [20].) Therefore, it is possible that
the eigenvalue distribution obtained by the CLM depends on the norm chosen for the gauge cooling
even if the method is working. On the other hand, the chiral condensate can be expressed in terms
of the eigenvalue distribution obtained by the CLM [20], and yet it is a holomorphic quantity. Such
a quantity should be universal and should not depend on the norm chosen for the gauge cooling as
long as the method is working. Details will be reported in our forthcoming paper [21].

5. Summary

In this work we have proposed new types of norm written in terms of the Dirac operator that
can be used in gauge cooling to overcome the fermionic singular-drift problem in the CLM. We
have demonstrated that the gauge cooling with the proposed norms makes the method work even
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(a) without gauge cooling
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(b) with gauge cooling using the N1 norm
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(c) with gauge cooling using the N2 norm

Figure 2: The eigenvalue distribution of D+m obtained by the CLM in each case. The data points represent
the eigenvalues obtained from the last 10 configurations with intervals of 200 steps.

in the small quark mass region. While the critical quark mass, below which we cannot study by
the CLM, still exists and increases with the chemical potential [21], the range of applicability of
the CLM is greatly enlarged by the new gauge cooling. The proposed method can be applied to
finite density QCD in a straightforward manner. It is interesting to explore the parameter region
accessible by the method.
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