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We give an analytical derivation of the confinement/deconfinement phase transition at finite tem-
perature in theSU(N) Yang-Mills theory in theD-dimensional space time forD > 2. For this
purpose, we use a novel reformulation of the Yang-Mills theory which allows the gauge-invariant
gluonic mass term, and calculate analytically the effective potential of the Polyakov loop average
concretely for theSU(2) andSU(3) Yang-Mills theories by including the gauge-invariant dynam-
ical gluonic massM. ForD = 4, we give an estimate on the transition temperatureTd as the ratio
Td/M to the massM which has been measured on the lattice at zero temperature and is calculable
also at finite temperature. We show that the order of the phase transition atTd is the second order
for SU(2) and weakly first order forSU(3) Yang-Mills theory. We elucidate what is the mecha-
nism for quark confinement and deconfinement at finite temperature and why the phase transition
occurs at a certain temperature. These initial results are obtained easily based on the analytical
calculations of the “one-loop type” in the first approximation. We discuss also how these results
are improved to eliminate the artifacts obtained for some thermodynamic observables
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1. Introduction

Quark confinement and chiral-symmetry breaking are the main subjects to be investigated for
understanding the various phases in the gauge theory for strong interactions, namely QCD at fi-
nite temperature and density. In a previous paper [1], we have proposed a theoretical framework
to obtain a low-energy effective theory of QCD towards a first-principle derivation of confine-
ment/deconfinement and chiral-symmetry breaking/restoration crossover transitions at finite tem-
perature. The basic ingredients are a novel reformulation [2] of Yang-Mills theory and QCD based
on new variables and the flow equation of the Wetterich type in the framework of the functional
renormalization group (FRG) as a realization of the Wilsonian renormalization group. In fact,
we have demonstrated that an effective theory obtained in this framework enables us to treat both
transitions simultaneously on equal footing from QCD.

In particular, the confinement/deconfinement transition in the pure gluon sector is described
by the nonperturbative effective potential for the Polyakov loop average which is obtained in a non-
perturbative way put forward by [3, 4] in the framework of FRG (See also [5, 6, 7, 8]). At present,
however, the FRG studies of the Yang-Mills theory and QCD rely heavily on hard numerical works
and the outcome is obtained only in the numerical way. This fact unables everyone to reproduce the
FRG results and to understand the results in a physically transparent manner. Therefore, a simple
analytical derivation is desired to understand such nonperturbative results from the first principle.

We demonstrate that the essential features on the confinement/deconfinement phase transition
can be obtained in a simple analytical way without hard numerical works, once we take into account
a gauge-invariant and dynamical gluonic massM which is allowed to be introduced in the refor-
mulation of the Yang-Mills theory. In fact, we have already emphasized the importance of such a
gluonic mass in the previous papers [2], but have not exhausted the outcome yet. The following is
the summary of the investigation [9].

Besides the numerical simulations on the lattice [10], there are other approaches, see e.g.,
[11, 12, 13, 14, 15]. Among them, especially, the authors of [11] have introduced a different kind of
gluonic mass term in the gauge-fixed Yang-Mills theory at finite temperature and have investigated
the effect of the mass term on confinement/deconfinement phase transition. They have found that
the phase transition is quite well described by the one-loop calculations in the perturbation theory,
once the gluonic mass is introduced to the Yang-Mills theory. Their works are very interesting in
its own right, but quite surprising. One must answer what is the meaning of the gluonic mass and
why the one-loop calculation is so good. We will give a partial answer to these questions from our
point of view. It should be remarked that their mass term is somewhat similar to ours at first glance,
but its theoretical origin and the content are totally different from ours.

2. The strategy: our standpoint

For this purpose, we use the reformulation of the Yang-Mills theory [2] which allows one to in-
troduce a gauge-invariant “mass term” for a specific gluonic degree of freedom called the remaining
field Xµ(x). Such a gluonic mass has already played the very important role in quark confinement
at zero temperature to understand the “Abelian dominance” in the Maximally Abelian gauge which
is replaced by the gauge-independent restricted field dominance [16] in our terminology.
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The standpoint of our approach, the first approximation and its improvements, is completely
different from the other work based on the systematic loop calculations in the perturbation theory
[11]. The standpoint of our approach has been explained in the previous work [1]. We aim at a
purely non-perturbative approach in which we look forthe initial approximation which captures
the essential features of the problem in question as much as possible at the initial stage, which
is the spirit of the first approximation. We do not intend to do the one-loop calculation in the
perturbation theory and do not intend to do the systematic loop calculations of higher orders, either.
Our approach is different from [11] conceptually in this aspect. We use the terminology “one-loop
type” to distinguish it from the one-loop in the perturbation theory.

In the first approximation, we take into account only the quadratic terms in the fields to ob-
tain the effective action (except for the restricted fieldVµ(x)), which leads to the “one-loop type”
calculations. It is well known that the effective actionΓ obtained from the classical actionS by
the Legendre transform of the generating functional of the connected Green functions is equal to
the classical actionSplus the additional part represented by the logarithmic determinant resulting
from the Gaussian integrations over the quadratic parts. Therefore, the actionSeff to be calculated
by integrating out all fields in the first approximation in our setting agrees with the effective action
Γ, up to the special treatment of the restricted fieldVµ as explained below.

The reason of the special treatment of the restricted field is as follows. In our formulation,
the Polyakov loop operatorL[A ] is completely written in terms of the restricted fieldV , i.e.,
L[A ] = L[V ]. By integrating out all the fields up to the quadratic parts other than the restricted
field V , we obtain the effective theory written in terms of the the restricted fieldV alone. This is
along the spirit of the first approximation mentioned in the above. Then, we estimate the Polyakov
loop average by the minimum of the effective potential obtained from the effective theory.

The resulting effective theory is identified with the low-energy effective theory in the following
sense. We use the results obtained in the first approximation as the input for performing the FRG
approach to improve the first result. In this sense, the first approximation is regarded as the initial
condition corresponding to the large flow parameterκ at which the FRG analysis start. Or the first
approximation can be regarded as a preliminary Ansatz for solving the flow equation of FRG.

Of course, the above setting is just an approximation and cannot be the rigorous treatment and
hence this first approximation must and will be improved afterwards by a systematic method. In
fact, we intend to improve the first result by the non-perturbative FRG at once (not by the systematic
order by order loop expansion). This is the standpoint of our approach adopted in this work.

3. Summary of the results

The following results are obtained based on an analytical calculation of the effective potential
Veff(L) of the Polyakov loop averageL alone in theSU(2) andSU(3) Yang-Mills theories at finite
temperatureT in D = 4 dimensions by including the gauge-invariant dynamical “gluonic mass”M.

1. There exists a confinement/deconfinement phase transition at a critical temperatureTd in the
respective Yang-Mills theory at finite temperatureT signaled by the Polyakov loop average
⟨L(xxx)⟩, i.e., non-vanishing⟨L(xxx)⟩ ̸= 0 for high temperatureT > Td, and vanishing⟨L(xxx)⟩= 0
for low temperatureT < Td. TheZ(N) center symmetry which is spontaneously broken at
high temperature restores at low temperature.
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2. The critical temperatureTd is estimated in the form of the ratio to the dynamical gluonic
massM in the respective Yang-Mills theory:

Td/M =0.34 forSU(2), Td/M = 0.36 forSU(3). (3.1)

It should be emphasized that this ratio is gauge-independent. To obtain the critical tempera-
tureTd, we need to know the valueM of the gluonic mass.1 The values of the gluonic mass
M have been measured on the lattice at zero temperatureT = 0 by Shibata et al. [16]:

M(T = 0) =1.1 GeV forSU(2), M(T = 0) = 0.8∼ 1.0 GeV forSU(3). (3.2)

A naive use of these values ofM leads to the estimate onTd:

Td =374 MeV forSU(2), Td = 288∼ 360 MeV forSU(3). (3.3)

Incidentally, the numerical simulations on a lattice give the values [10]:

Td =295 MeV forSU(2), Td = 270 MeV forSU(3), (3.4)

while the continuum approach, e.g., the most recent FRG studies give [4, 6]

Td =230 MeV forSU(2), Td = 275 MeV forSU(3). (3.5)

3. The order of the phase transition atTd is the second order forSU(2) and (weakly) first
order forSU(3) Yang-Mills theory. This result is shown to be consistent with the standard
argument based on the Landau theory of phase transition using the expansion of the effective
potentialVeff(L) into the power series of the Polyakov loop averageL as the order parameter.
In particular, the first order transition in theSU(3) Yang-Mills theory is induced by the cubic
termL3 of the Polyakov loop averageL in the effective potentialVeff(L).

4. The mechanism for quark confinement or deconfinement at finite temperature is elucidated
without detailed numerical analysis in this framework by taking into account the gluonic
massM. In high temperatureT ≫ M the gluonic massM becomes negligible and all the
relevant degrees of freedom behave as massless modes, and the effective potential can be
calculated in the perturbation theory so that the minimum of the effective potentialVeff(L) is
given at the non-vanishing Polyakov loop averageL ̸= 0 implying deconfinement. Whereas
in low temperatureT ≪ M the “massive” spin-one gluonic degrees of freedom (i.e., two
transverse modes and one longitudinal mode) are surpressed and the remaining unphysical
massless degrees of freedom (i.e., a scalar mode, and ghost–antighost modes) become dom-
inant. Consequently, the signature of the effective potentialVeff(L) is reversed so that the
minimum of the effective potential is given at the vanishing Polyakov loop averageL = 0
implying confinement.2

1Our estimate onTd is indeed a little bit higher than expected at present. But this is based on the value of the
massM obtained at zero temperatureT = 0. The gluonic massM should depend on the temperatureT. The mass
M should be determined in a self-consistent way, not just a given parameter. Indeed, if the massM decreases as the
temperature increases:M(T > 0) < M(T = 0), then the initial value reproduces a better result than the naive estimate.
Therefore, our approach has the potential to give better numerical estimate onTd without further improvements. The
direct measurement of the gluonic massM on the lattice at finite temperature is under way.

2This observation is in line with the general arguments given in [4] in the FRG and agrees with the statement given
in [11].
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Figure 1: (Left) The D = 4 effective potentialV̂ of the SU(2) Polyakov loop for M̂ := M/T =

0.0,1.0,2.0,2.5,2.6,2.7,2.8,2.9,3.0,3.1, as a function of the Polyakov loop averageL = cosϕ
2 ∈ (−1,1].

(Right) The D = 4 effective potentialV̂ of the SU(3) Polyakov loop atϕ8 = 0 for M̂ := M/T =

2.65,2.70,2.75,2.76,2.80,2.90, as a function of the Polyakov loop averageL = 1
3

[
1+2cos(ϕ3

2 )
]
∈

(−1/3,1], normalized aŝV(L = 0) = 0.

5. The above results are shown using the first approximation based on the analytical calcula-
tions of the “one-loop type” (which is different from the one-loop calculation in perturba-
tion theory). This results of the first approximation offer an effective starting point for the
more systematic analysis of the non-perturbative studies. These initial results are regarded
as the initial condition in solving the flow equation of the Wetterich type and they can be
improved in a systematic way in the FRG framework according to the prescription given in
the previous paper [1] where the crossover between confinement/deconfinement and chiral
symmetry breaking/restoration has been analyzed from the first principle, i.e., QCD, without
explicitly introducing the gluonic mass. But, the FRG improvement does not change the
above conclusions in an essential manner. The aboveTd gives a lower bound on the true
critical temperatureTc, since the flow evolves towards enhancing the confinement, under the
assumption thatM does not change so much along the flow.

4. Remark

We must be cautious in treating the thermodynamic observables, which needs the value of the
absolute minimumVmin

eff =Veff(Lmin) of the effective potentialVeff, i.e., the vacuum energy. We do
not need such information to derive the above results which are obtained only from the location
Lmin of L giving the minimumVmin

eff :

V ′
eff(Lmin) :=

∂Veff(L)
∂L

∣∣∣
L=Lmin

= 0. (4.1)

The thermodynamic pressureP(T) = −Vmin
eff (T) = −Veff(Lmin(T)) remains positive in the low-

temperature confined phaseL = 0 in the first approximation of our formulation, in sharp contrast
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to the positivity violation reported in the preceding work at one loop [12, 11].3 For the entropy
densityS (T) := dP(T)

dT , we find the positivity violation near the critical temperature and need the
improvement of the naive first approximation. For more details on the theoretical and physical
reasons for these artifacts, see Section IV.D and V.C of [9] and [17].

Notice that the mechanism of the dynamical mass generation for the gluon field has been
already proposed and that the dynamical gluonic mass generation has been demonstrated to occur
at zero temperature in [18, 19], see also [20] for the related works. The gauge-invariant massM
for the remaining fieldXµ(x) can be generated dynamically through the gauge-invariant vacuum
condensation of mass dimension two:4

Φ :=
⟨
X A

ρ X ρA
⟩
=
⟨
2tr[XρX ρ ]

⟩
, (4.2)

which occurs due to the quartic self-interactions among the gluons represented by the remaining
fields in the Yang-Mills theory. The dynamical gluonic massM is obtained from the minimum
of the effective potentialVeff(Φ) of the vacuum condensateΦ, which is also written asVeff(M).
Another way of understanding the mass term is also given from the viewpoint of the gluonic Higgs
field, which can be elucidated only in our formulation [2, 9].

The above ideas enable us to calculate the gauge-invariant dynamical gluonic massM also
at finite temperature in our reformulation. In fact, the temperature dependence of the dynamical
massM(T) is obtained from the minimum of the effective potentialVeff(M) at finite tempera-
ture. At the same time, we want to calculate the Polyakov loop averageL to discuss the confine-
ment/deconfinement transition. Therefore, we need to calculate the simultaneous effective potential
Veff(Φ,L) as a function of the two variablesM andL. It is confirmed by comparing [19] and [21]
that the gauge-invariant vacuum condensation of mass dimension twoΦ can be related to the well-
known gauge-invariant gluon condensation of mass dimension four, i.e.,

⟨
F A

µνF µνA
⟩

responsible
for the trace anomaly, which determines the non-perturbative vacuum. In this work, however, we
treat the massM just as a constant without the temperature dependence by restricting to the effec-
tive potentialVeff(L) of the Polyakov loop averageL alone for simplicity. Hence,M is equal to
the value at zero temperature. The result of the effective potentialVeff(Φ,L) will be reported in a
subsequent work to determineΦ andL simultaneously.

Acknowledgements— This work is supported by Grant-in-Aid for Scientific Research (C)
24540252 and 15K05042 from Japan Society for the Promotion of Science (JSPS).

References

[1] K.-I. Kondo, Phys. Rev. D82, 065024 (2010). arXiv:1005.0314 [hep-th]

[2] K.-I. Kondo, S. Kato, A. Shibata and T. Shinohara, Phys. Rept.579, 1–226 (2015). arXiv:1409.1599
[hep-th].

3It has been shown that the two-loop corrections improve this problem and provide both a positive pressure and a
positive entropy in the whole range of temperatures explored in the second paper of [11]. Notice that the pressure (resp.
the entropy) still containsT4 (resp.T3) contributions at smallT, a feature which was also signaled in [11] and which is
potentially also present in other approaches, in disagreement with lattice data.

4The condensateΦ is a gauge-invariant version (which is made possible in our formulation) of the BRST-invariant
vacuum condensation of mass dimension-two obtained from the on-shell BRST invariant operator of mass dimension
two proposed in [22].

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
7
9

Confinement/deconfinement transition Kei-Ichi Kondo

[3] F. Marhauser and J.M. Pawlowski, arXiv:0812.1144 [hep-ph].

[4] J. Braun, H. Gies and J.M. Pawlowski, Phys. Lett. B684, 262(2010). arXiv:0708.2413 [hep-th],

[5] J. Braun, A. Eichhorn, H. Gies, J.M. Pawlowski, Eur. Phys. J. C70, 689–702 (2010). arXiv:1007.2619
[hep-ph]

[6] L. Fister and J.M. Pawlowski, Phys. Rev. D88, 045010 (2013). arXiv:1301.4163 [hep-ph],

[7] T.K. Herbst, J.M. Pawlowski, and Bernd-Jochen Schaefer, Phys. Lett. B696, 58–67 (2011).
arXiv:1008.0081 [hep-ph]

[8] L.M. Haas, R. Stiele, J. Braun, J.M. Pawlowski, J. Schaffner-Bielich, Phys.Rev. D87, 076004 (2013).
arXiv:1302.1993 [hep-ph]

[9] K.-I. Kondo, e-Print: arXiv:1508.02656 [hep-th]

[10] B. Lucini and M. Panero, Phys. Rept.526, 93–163 (2013). arXiv:1210.4997 [hep-th]

[11] U. Reinosa, J. Serreau, M. Tissier, and N. Wschebor, Phys. Lett. B742, 61–68 (2015).
arXiv:1407.6469 [hep-ph].
U. Reinosa, J. Serreau, M. Tissier, and N. Wschebor, Phys. Rev. D91, 045035 (2015).
arXiv:1412.5672 [hep-th]

[12] C. Sasaki and K. Redlich, Phys.Rev. D86 (2012) 014007 arXiv:1204.4330 [hep-ph]

[13] H. Reinhardt and J. Heffner, Phys. Rev. D88, 045024 (2013). arXiv:1304.2980 [hep-th]
H. Reinhardt and J. Heffner, Phys. Lett. B718, 672–677 (2012). arXiv:1210.1742 [hep-th]

[14] C.S. Fischer, J. Luecker, J.A. Mueller, Phys. Lett. B702, 438–441 (2011). arXiv:1104.1564 [hep-ph]
C.S. Fischer, A. Maas, J.A. Muller, Eur. Phys. J. C68, 165–181 (2010). arXiv:1003.1960 [hep-ph]

[15] K. Fukushima and K. Kashiwa, Phys. Lett. B723, 360–364 (2013). arXiv:1206.0685 [hep-ph]

[16] A. Shibata, S. Kato, K.-I. Kondo, T. Murakami, T. Shinohara and S. Ito, Phys. Lett. B653, 101–108
(2007). arXiv:0706.2529 [hep-lat].
A. Shibata, S. Kato, K.-I. Kondo, T. Murakami, T. Shinohara, and S. Ito, POS(LATTICE-2007)331,
arXiv:0710.3221 [hep-lat]
A. Shibata, K.-I. Kondo, S. Kato and T. Shinohara, Phys. Rev. D87, 054011 (2013). arXiv:1212.6512
[hep-lat]

[17] K.-I. Kondo et al, in preparation.
A. Shibata, K.-I. Kondo, S. Kato, and T. Shinohara, PoS LATTICE2014 (2015) 340.
arXiv:1501.06271 [hep-lat]

[18] K.-I. Kondo, Phys. Rev. D74, 125003 (2006). [hep-th/0609166]

[19] K.-I. Kondo, Phys. Rev. D89, 105013 (2014). arXiv:1309.2337 [hep-th]

[20] K.-I. Kondo, Phys. Lett. B600, 287–296 (2004). e-Print: hep-th/0404252
K.-I. Kondo, Int. J. Mod. Phys. A20, 4609–4614 (2005). e-Print: hep-th/0410024

[21] A. Eichhorn, H. Gies, and J. M. Pawlowski, Phys. Rev. D83, 045014 (2011), Erratum-ibid. D83,
069903 (2011). arXiv:1010.2153 [hep-ph]

[22] K.-I. Kondo, Phys. Lett. B514, 335–345 (2001). [hep-th/0105299]
K.-I. Kondo, Phys. Lett. B572, 210–215 (2003). [hep-th/0306195]

7


