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The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means
of lattice simulation. We focus on the influence of a chiral chemical potential on the confine-
ment/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simu-
lation is carried out with dynamical staggered fermions without rooting. The dependences of the
Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical
potential and the temperature are presented. We present here the first results of simulations with
three-color QCD. The critical temperature is observed to increase with increasing chiral chemical
potential for both gauge groups.
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1. Introduction

For the vacuum state of QCD as well as for QCD at finite temperature the existence of non-
trivial topological excitations is an important feature. Well known examples are instantons [1]
and calorons [2, 3]. The role of topologically charged fields for the solution of the famous UA(1)
problem has been recognized very early [4, 5].

Some time ago the gluonic topological structure and the axial anomaly have been proposed to
be immediately observable (and controllable) through the generation of P and CP violating domains
in heavy ion collisions [6, 7]. In this situation, the magnetic field created by the spectator nucleons
may initiate a charge separation relative to the reaction plane (parallel to the magnetic field) [8].
The resulting charge asymmetry of quarks would become observable in terms of the recombined
hadrons (chiral-magnetic effect) [9].

We report our study of the change of the phase structure induced by a chiral chemical potential
µ5 in an equilibrium lattice simulation. The role of µ5 is to mimic the accumulated chiral imbalance
due to a CP violating, topologically nontrivial gluonic background in the early stadium of a heavy
ion collision event, which is indirectly described by the chiral chemical potential. In this setting,
the modification of the phase diagram by a chiral chemical potential µ5 has been studied mainly by
means of effective models [10, 11, 12, 13, 14, 15, 16]. The predictions of these papers will later be
compared with our results.

On the lattice, contrary to the case of non-zero baryon chemical potential, simulations with
non-vanishing µ5 are not hampered by a sign problem. Thus, one can employ the standard hybrid
Monte Carlo algorithms. Such lattice simulations with µ5 6= 0 were already performed in Ref. [17,
18]. The main goal of these papers, however, was the study of the chiral magnetic effect. Therefore,
the phase diagram was not systematically studied.

In Refs. [19, 20, 21] we have carried out the first pilot lattice study of the phase diagram with
non-zero chiral chemical potential. It was performed in SU(2) QCD with four flavors, which we
have considered as a simplified model of QCD.

One reason for choosing the SU(2) gauge group was that less computational resources are
required than for full QCD. The second reason is that we have already carried out two-colour
QCD computations with an external magnetic field [22, 23] and plan to return to it with chemical
potentials. Recently, we have started to run simulations with the SU(3) gauge group and present
here the first results of these measurements.

2. Details of the simulations

We have performed simulations with the SU(2) gauge group. We employ the standard Wilson
plaquette action. For the fermionic part of the action we use staggered fermions

S f = ma∑
x

ψ̄xψx +
1
2 ∑

xµ

ηµ(x)(ψ̄x+µUµ(x)ψx− ψ̄xU†
µ(x)ψx+µ)+

+
1
2

µ5a∑
x

s(x)(ψ̄x+δŪx+δ ,xψx− ψ̄xŪ
†
x+δ ,xψx+δ ),

(2.1)

∗Speaker.
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where the ηµ(x) are the standard staggered phase factors: η1(x) = 1,ηµ(x) = (−1)x1+...+xµ−1 for
µ = 2,3,4. The lattice spacing is denoted by a, the bare fermion mass by m, and µ5 is the value
of the chiral chemical potential. In the chirality breaking term s(x) = (−1)x2 , δ = (1,1,1,0) rep-
resents a shift to the diagonally opposite site in a spatial 23 elementary cube. The combination of
three links connecting sites x and x+δ : Ūx+δ ,x =

1
6 ∑

i, j,k=perm(1,2,3)
Ui(x+e j +ek)U j(x+ek)Uk(x) is

symmetrized over the 6 shortest paths between these sites.
In the continuum limit Eq. (2.1) can be rewritten in the Dirac spinor-flavor basis [24, 25] as

follows, corresponding to a theory of four (degenerate) flavors

S f → S(cont)
f =

∫
d4x

4

∑
i=1

q̄i(∂µγµ + igAµγµ +m+µ5γ5γ4)qi. (2.2)

We would like to emphasize that the chiral chemical potential, introduced in Eq. (2.1), corre-
sponds to the taste-singlet operator γ5γ4⊗1 in the continuum limit.

We have performed simulations with two lattice sizes Nτ ×N3
σ = 6×203,10×283. The mea-

sured observables are: the Polyakov loop, the chiral condensate, the Polyakov loop susceptibil-
ity, the disconnected part of the chiral susceptibility. The Polyakov loop and the corresponding
susceptibility are sensitive to the confinement/deconfinement phase transition, whereas the chiral
condensate in principle responds to chiral symmetry breaking/restoration.
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Figure 1: Polyakov loop and chiral condensate versus T for five values of µ5. Lattice size is 6×203, fermion
mass is m≈ 12 MeV. Errors are smaller than the data point symbols. The curves are to guide the eyes.

We use the results of Ref. [22] for the scale setting (calibration) of the lattice.

3. Results of the calculation

We present results of our simulations on a lattice of size 6×203 for five fixed values of µ5 =

0,150,300,475,950 MeV and different values of T . The fermion mass was kept fixed in physical
units m ≈ 12 MeV(mπ ≈ 330 MeV). The expectation values of the Polyakov loop and the chiral
condensate are shown in Fig. 1. The sharp change of the observables as functions of T indicates the
onset of the deconfinement and the chiral restoration phase transition. It is seen that the temperature
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Figure 2: Polyakov loop susceptibility and chiral susceptibility versus T for three values of µ5 = 0,475,950
MeV. Lattice size is 6× 203, fermion mass is m ≈ 12 MeV. In order to avoid a complete superposition of
data points belonging to different µ5 values we applied a tiny shift along the T axis.

of both phase transitions increases with the chiral chemical potential. One also sees that the phase
transition becomes sharper for increasing chiral chemical potential.

To study the change of the critical temperature more quantitatively, we also calculated the
chiral and the Polyakov loop susceptibilities. The resulting dependences for values µ5 = 0,475,950
MeV are shown in Fig. 2 (in order to make the figure readable we do not present data for µ5 =

150,300 MeV on it). We see that increasing the value of the chiral chemical potential moves
the position of the peaks of the both susceptibilities to larger values of β . This means that the
transition temperature increases. We have fitted the data for both the susceptibilities near the peak
with a Gaussian function and extracted the critical temperatures T χ

c (β
χ
c ) and T L

c (β
L
c ). The resulting

dependences of both critical temperatures on the value of the chiral chemical potential µ5 are shown
on the Fig. 3. One sees that for all points except for µ5 = 950 MeV the critical temperatures T χ

c and
T L

c coincide within errors. There is a slight discrepancy for µ5 = 950 MeV, but because of possible
systematic uncertainties in the fit as well as finite size effects, we cannot claim that the transition
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Figure 3: The dependence of the critical temperatures T χ
c and T L

c on the value of the chiral chemical
potential. Lattice size is 6×203, fermion mass is m≈ 12 MeV. The curve connecting the points for T χ

c is to
guide the eyes.
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temperatures are different.
The dependence of the observables on the quark mass ma was detailed studied in [21] on

larger lattice 10×283. Extrapolation to zero quark mass allows us to conclude that the behaviour
qualitatively is the same in the chiral limit: the critical temperature grows with µ5.

4. First results for SU(3) gauge group.

We started to perform simulations with SU(3) gauge group and dynamical Wilson fermions
and present the first preliminary results of this study in Fig. 4 for five values of µ5a= 0,0.25,0.5,0.75
and 1.00. The results show that in this case the critical β determined by the sharp change in the
observables increases with growing µ5, what means that the critical temperature also grows, thus
being in agreement with our results for SU(2) gauge group.
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Figure 4: Polyakov loop and chiral condensate versus T for five values of µ5 for Wilson fermions and
SU(3) gauge group. Lattice size is 4× 163, κ = 0.1665. For β = 5.32144 it corresponds to the pion mass
mπ = 418 MeV. Errors are smaller than the data point symbols. The curves are to guide the eyes.

5. Discussion and conclusion

We have presented an investigation of the phase diagram of two-color QCD with a chiral
chemical potential using lattice simulations with dynamical staggered fermions without rooting.

We have calculated the chiral condensate and the Polyakov loop for different values of the
temperature T and chiral chemical potential µ5 and their respective susceptibilities. Our main
result is the observation that the finite temperature phase transition becomes clearly shifted to larger
critical temperature with rising chiral chemical potential. It was seen that this conclusion remains
true when one is extrapolating to vanishing quark mass. Additionally we saw the respective critical
temperatures T L

c and T χ
c to agree within errors at least up to µ5 ≈ 0.5 GeV.

Our result is in contradiction to results obtained with various effective models of QCD [10,
11, 12, 15, 16], where the critical temperature was said to decrease as µ5 increases.

We concede that we study two-color QCD with N f = 4 quarks which is different from what
is mostly considered in the effective models. For a closer comparison we have started the lattice
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simulation for the SU(3) gauge group and N f = 2 Wilson fermions and the first results are in
agreement with the presented conclusions.

It is likely that the contradictions are rather a consequence of the fact that the critical tem-
perature is not a universal parameter but crucially depends on the structure and parameters of the
effective models. It is unclear to what extent they describe the actual behavior of finite temperature
QCD. It should be also noted that some predictions obtained in different effective models are in
conflict with each other.

In addition to the dependence of the critical temperature on the chiral chemical potential, some
effective models predict that – beginning from some critical value of µc

5 – the transition turns into
a first order transition. In our simulations we see that the transition becomes sharper as we increase
µ5, but we don’t see a first order phase transition for our parameters.

Besides within effective models, the behaviour of QCD and QCD-like theories with nonzero
µ5 was studied in papers [26, 27] in a framework of Dyson-Schwinger equations and in [28] from
the point of view of large-Nc equivalence. The authors of these papers found that the critical
temperature rises with µ5 and the “phase transition” actually is always a crossover. These results
are corroborating the results of our paper.
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