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Thimble regularization at work besides toy models:
from Random Matrix Theory to Gauge Theories.
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Thimble regularization as a solution to the sign problem has been successfully put at work for a
few toy models. Given the non trivial nature of the method (also from the algorithmic point of
view) it is compelling to provide evidence that it works for realistic models. A Chiral Random
Matrix theory has been studied in detail. The known analytical solution shows that the model is
non-trivial as for the sign problem (in particular, phase quenched results can be very far away from
the exact solution). This study gave us the chance to address a couple of key issues: how many
thimbles contribute to the solution of a realistic problem? Can one devise algorithms which are
robust as for staying on the correct manifold? The obvious step forward consists of applications
to gauge theories.
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1. Motivation

When a field theory features complex terms in its action, we say that it is plagued by the
so-called sign problem (e.g. it usually occurs at finite chemical potential); complex terms prevent
numerical simulation of such theories by means of Monte Carlo methods. Several wayouts have
been proposed so far, but a universal and rigorous prescription to circumvent the sign problem is
still missing. The power of the thimble approach lies in the fact that integrating along the thimble
automatically keeps SI = ℑ(S) constant, thus avoiding the problem of sampling complex actions.
A few multi-dimensional models have been successfully investigated with this approach ([1, 2]).
Quite interestingly, the simple ones (e.g. the 0-dimensional φ 4 toy-model [3]) showed a non-trivial
thimble structure. It is therefore interesting to apply the thimble approach to a simple, yet multi-
dimensional model (the CRM theory) to check if more than one thimble is needed to recover the
expected results. At the same time, a new method to sample on the thimble will be presented. The
details of the following presentation and its application to the CRM theory can be found in [4].

2. Essential results from Morse theory

In this section we collect main results from Picard-Lefschetz (i.e. complex Morse) theory, fol-
lowing the notation of [5]. For simplicity of notation, let us consider a scalar field theory consisting
of a collection of n real degrees of freedom {xi}i=1···n defined on a certain domain C (we will take
C = Rn). The path-integral expression for the expectation value of an observable O is

〈O〉= Z−1
∫
C

dnxO [x]e−S[x] (2.1)

with the partition function Z given by the same integral without O [x]. The (complex) action
S = SR + iSI and the observable O are assumed to be some holomorphic functions of the fields.
Now we complexify the fields, letting xi 7→ zi = xi + i yi ∈C; Morse theory states that the following
decomposition holds

Z = ∑
σ

mσ

∫
Jσ

dnze−S(z) = ∑
σ

mσ e−iSI(zσ )
∫

Jσ

dnze−SR(z) (2.2)

where σ labels each critical point zσ of the action S (z) in the complexified domain and
Jσ ⊂C n is the (stable) Lefschetz thimble associated with the critical point zσ . mσ ∈Z are integer
coefficients whose computation is potentially non-trivial (they will be discussed later). An analo-
gous result holds for the integral in eq. (2.1). As previously stated, SI is constant along the thimble
and therefore can be computed once and for all at the critical point: all is left is a real weight e−SR

which can be used for Monte Carlo simulations.
We now give the definition of stable thimble: it is a manifold of real dimension n consisting

of the union of all those curves of steepest-ascent (SA) for the “action” SR which fall into zσ at
τ →−∞, that is solutions of

dxi

dτ
=

∂SR (x,y)
∂xi

dyi

dτ
=

∂SR (x,y)
∂yi

(2.3)
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It is easy to check that, starting from the critical point at τ→−∞, along these SA curves SR is
always increasing, while SI stays constant.

As for the coefficients mσ , they are defined as the intersection numbers between Kσ and the
original domain of integration C : mσ = 〈C ,Kσ 〉, with Kσ the unstable thimble associated with zσ .
The unstable thimble is given by the union of all the curves z(τ) that are solutions to (2.3) which
fall into zσ for τ →+∞. The problem of knowing which thimbles contribute to the decomposition
(2.2) is a highly non trivial one (see [6] for a detailed discussion). In the present work, we have
analytical results available and so will discuss the relevance of different thimbles a-posteriori.

Let us now consider the integration measure appearing in (2.2). The canonical basis of Cn

whose duals appear in dnz = dz1 ∧ ·· · ∧ dzn is in general not parallel to the tangent space basis
of the thimble at a generic point z (we will name such tangent space TzJσ ). Let {U (i)}i=1···n be
the tangent space basis at z (these are n complex vectors with n components forming the columns
of an n× n unitary matrix U). Now we make a change of coordinates from the canonical ones
of Cn to the ones of TzJσ (these are n real numbers {yi}i=1···n). The integration measure thus
becomes dnz = detU dny, where the term detU = eiω is what is referred to as the residual phase,
which accounts for the non-parallelism of TzJσ with the canonical basis of Cn [6, 2, 7, 4]. This
is a complex term which must be taken into account by using reweighting; this could in principle
create a residual sign problem. We expect this not to be the case, as ω varies smoothly along SA
curves. Moreover the regions in which it could get large are likely to be far from the critical point,
that is regions where the action SR is large. However, this is something which should always be
checked and so far the results have been very encouraging (see [2] and [7] for a more thorough
discussion). In applying the thimble approach to the CRM theory, we also found that the residual
phase can be safely taken into account with reweighting.

3. An algorithm to sample on the thimble

In this section a new algorithm to sample field configurations on a thimble is sketched (this
algorithm was first proposed in [8]), the interested reader can find all the details in [4].

We now make a change of notation and work with 2n real fields {φi} which consist in both
the real and the imaginary parts of z. Let us begin by describing the tangent space to Jσ in the
vicinity of the critical point φσ . In this region, we can expand the action

SR (φ) = SR (φσ )+
1
2

Φ
T HΦ+O

(
φ

3) (3.1)

where the components of the 2n-dimensional real vector Φ are Φi = φi− φσ ,i and H is the
2n× 2n hessian matrix of SR evaluated at the critical point. The hessian can be put into diag-
onal form by the transformation H = WΛW T , with W an orthogonal matrix whose columns are
the eigenvectors of H. Because of holomorphicity of the action, the spectrum features n positive
eigenvalues {λi}i=1···n and their negative counterparts (equal in modulus). The positive eigenvalues
correspond to eigenvectors which span the tangent space to the stable thimble at the critical point:
any combination of these gives a direction along which SR grows (we shall label this set of eigen-
vectors {v(i)}i=1···n). A particular SA curve on the thimble can be identified defining the direction

3
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along which one leaves the critical point; this direction is given by an n-dimensional normalised1

vector n̂. Therefore a point Φ ∈Jσ can be unambiguously identified by a choice of n̂ and the time
t of integration of the SA equations (2.3). The mapping is thus

Sn−1×R 3 (n̂, t)↔Φ ∈Jσ (3.2)

If one explores whole SA curves by integrating in t ∈ R, the thimble can then be sampled by
picking up all the possible SA curves. This is the essence of the algorithm which is described in
this work.

In the following we need to compute the tangent space to the thimble at a generic point Φ, for
which we lack a local description. We shall resort to parallel-transporting the well-known tangent
space at the critical point along the SA curve to the point Φ. This is accomplished by solving a
parallel-transport equation for each basis vector ([6, 2, 7])

dV (i)
j

dt
=

2n

∑
k=1

∂ 2SR

∂φ j∂φk
V (i)

k i = 1 · · ·n j = 1 · · ·2n (3.3)

The asymptotic (t→−∞) solution to (2.3) and (3.3) is given by

t� 1

φ j (t)≈ φσ , j +
n
∑

i=1
v(i)

j eλitni j = 1 · · ·2n |~n|2 = 1

V (i)
j (t)≈ v(i)

j eλit j = 1 · · ·2n i = 1 · · ·n
(3.4)

If we know a reference time t0� 1 at which (3.4) holds, the latter can be used to provide an
initial condition for a SA on the thimble.

We now rewrite the partition functions as a sum of contributions from all the possibile SA
curves. We will take a few shortcuts (further details can be found in [4]). The partition function
function can be cast into the form

Z = ∑
σ

mσ e−iSI(φσ )
∫

Jσ

n

∏
i=1

dyi e−SReiω = ∑
σ

mσ e−iSI(φσ )
∫ n

∏
i=1

dni δ

(
|~n|2−1

)
Zn̂〈eiω〉n̂ (3.5)

by employing a Faddeev-Popov-like trick. The quantity 〈 f 〉n̂ may be regarded as the “expec-
tation value” of f on a single SA curve

〈 f 〉n̂ =

+∞∫
−∞

dt ∆n̂ (t)e−SR(n̂,t) f (t)

+∞∫
−∞

dt ∆n̂ (t)e−SR(n̂,t)
(3.6)

where the quantity in the denominator can be regarded as a “partial” partition function Zn̂. An
expression for ∆n̂ (t) is worked out in [4] in terms of the local (parallel-transported) basis vectors.
The same vectors are then used to compute the complex n×n matrix U whose determinant is the
residual phase. The expectation value of an observable O can be computed as

1Being normalised, the vector n̂ effectively encodes n− 1 degrees of freedom, which, along with the time t of
integration of SA equations, is precisely what is needed to recover the original n degrees of freedom.
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〈O〉= 1
Z ∑

σ

mσ e−iSI(φσ )
∫ n

∏
i=1

dni δ

(
|~n|2−1

)
Zn̂〈Oeiω〉n̂ (3.7)

The t integration which is evident in (3.6) is carried out numerically while integrating (2.3).
We are then left with integration in n̂-space. As each SA contributes to the total partition function
with a weight Zn̂/Z, it would be reasonable to do some kind of importance sampling with respect
to this measure. This is difficult, since computing Zn̂ requires integration along all the SA curve
identified by n̂. As a first try for the algorithm we have therefore used a static, crude Monte Carlo,
that is we sampled the n̂-space uniformly. This method can easily become very inefficient (e.g. for
large systems) and is the cause of the larger error bars in Figure 1; anyway, this crude approach
proved to be enough to show the effectiveness of the thimble regularization for the CRM model in
the range of parameters we explored.

4. The CRM theory

The Chiral Random Matrix theory we refer to is described in [9] and is related to QCD in the
ε-regime of Chiral Perturbation Theory. The sign problem comes from the presence of a chemical
potential µ . In [9] complex Langevin was used to compute the expectation value of the chiral
condensate for different values of the quark mass and failures occured at low masses, where the
algorithm seemed to follow the predictions of the phase-quenched theory instead of the exact one.
In [10] a different parametrization was proposed which made complex Langevin work fine. In this
work we make use of the first parametrization and show that the thimble approach has no problems
in computing expectation values of the condensate. The partition function of the CRM model is

ZN f
N (m) =

∫
dΦdΨdetN f (D(µ)+m)exp

(
−N Tr[Ψ†

Ψ+Φ
†
Φ]
)
, (4.1)

with

D(µ)+m =

(
m icosh(µ)Φ+ sinh(µ)Ψ

icosh(µ)Φ† + sinh(µ)Ψ† m

)
(4.2)

Φ and Ψ are two N ×N complex matrices, that is Φ = a + ib and Ψ = α + iβ . We have
therefore 4N2 degrees of freedom which will be complexified, the thimble being a manifold of real
dimension 4N2 embedded in an euclidean space of dimension 8N2. The observable we will be
concerned with is the chiral condensate defined as

1
N
〈η̄η〉= 1

N
∂

∂m
logZ (4.3)

In Figure 1 we see the results of the thimble simulation for the real part of the condensate at
fixed N f = 2 and µ̃ =

√
Nµ = 2 as a function of m̃ = Nm for N = 1,2,3,4. The exact results are

recovered within errors, even in regions where the sign problem is severe (the exact result is very
different from the phase-quenched one). All the simulations were carried out considering only the
thimble attached to the trivial vacuum a = b = α = β = 0. We found no evidence of the relevance of
more than this thimble, which was quite unexpected, especially at low dimensions. As a check, we
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tried to identify other critical points: we found two classes of them (there is a symmetry involved -
see [4]) but they all had

SR (φσ 6= 0) < SR (φσ = 0) = min
φ∈R4(N×N)

SR (φ) (4.4)

and by Morse theory they are all irrelevant in the decomposition (2.2) [6, 5, 2].

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1
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m̃

1 N
〈η̄

η
〉

N=1

N=2

N=3

N=4

Figure 1: Exact (solid red line), phase-quenched (dashed blue line) and thimble simulation results for the
chiral condensate at fixed N f = 2, µ̃ = 2.

5. Gauge theories

Gauge theories are the ultimate goal for the thimble regularization. Before tackling them, tests
on low-dimensional toy models featuring gauge invariance are mandatory, being the approach still
new and in need of some tuning. The details of the thimble formalism applied to theories featuring
gauge invariance (as well as some examples) are discussed in [11]. Here we just mention three
fundamental steps. The first step is the complexification of the gauge group (which we assume to
be SU(N))

SU(N) 3U = eixaT a → eizaT a
= ei(xa+iya)T a ∈ SL(N,C) (5.1)

then we have to rewrite the SA equations (2.3) in a gauge-covariant form and the final ingre-
dient is the parallel-transport equation for each basis vector, generalized to a non-abelian gauge
group. For further details, the reader may consult [11].

6. Conclusions

We have discussed the thimble approach applied to the Chiral Random Matrix theory, yielding
correct results in a region where the sign problem is quite severe. On this occasion we also tested
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for the first time on a multi-dimensional model the algorithm initially proposed in [8]. The whole
method proved to be quite effective, even in its crudest implementation, that is the static Monte
Carlo for the extraction of the SA curves in n̂-space. Moreover, we found no evidence for the
presence of relevant thimbles beyond the one associated to the trivial vacuum (at least, in the
region of parameter space we explored). This is of course something which is hard to generalise
to a realistic field theory, nevertheless these first results are very encouraging with respect to more
realistic applications of the thimble regularisation.
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