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We determine temperature (T ) dependence of UA(1) restoration from meson screening masses
calculated with 2+1 flavor lattice QCD, using Polyakov-loop extended Nambu–Jona-Lasinio
(PNJL) model with entanglement vertex. The entanglement PNJL (EPNJL) model exhibits the
UA(1) anomaly through the Kobayashi–Maskawa–’t Hooft (KMT) interaction. T dependence of
KMT interaction strength is determined from the difference between pion and a0 meson screen-
ing masses. The strength is strongly suppressed around the pseudocritical temperature of chiral
transition. Using this T -dependent KMT interaction, we draw the Columbia plot near the physi-
cal point. In the light-quark chiral-limit with the strange quark mass fixed at the physical value,
the chiral transition becomes the second order. This indicates that there exists a tricritical point.
Hence the location is estimated.
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1. Introduction

In the Quantum Chromodynamics (QCD) vacuum, UA(1) symmetry is explicitly broken by
the UA(1) anomaly through the topologically nontrivial gauge configurations. For high temperature
(T ), the instanton density dninst(T ) is suppressed by the Debye-type screening [1]:

dninst(T )∼ dninst(0)exp
[
−π2ρ2T 2

(2
3

Nc +
1
3

N f

)]
, (1.1)

where Nc(N f ) means number of colors (flavors) and ρ means instanton radius. The suppresion
suggests that UA(1) symmetry is effectively restored at high temperature. The restoration of UA(1)
symmetry is related with the order of the chiral phase transition in 2-flavor QCD at zero light-quark
mass. In Ref. [2], it is suggested that the order may be second order with 3d Izing O(4) universality
class if the effective restoration is not completed at T = Tc, where Tc is transition temperature for
chiral phase transition. When UA(1) symmetry is restored completely at T = Tc, the chiral transition
becomes the first order [2]. Recently, however, it was pointed out in Ref. [3] that the second order
is still possible. In this case, the universality class is not O(4) but U(2)L ×U(2)R. There are many
lattice QCD (LQCD) simulations and effective model analyses made so far to clarify the order and
its universality class in the two-flavor chiral limit and the light-quark chiral limit where light-quark
mass vanishes with strange-quark mass fixed at the physical value, but these are still controversial.

In this talk, we incorporate the effective restoration of UA(1) symmetry in entantlement Polyakov-
loop extended Nambu–Jona-Lasinio (EPNJL) model by introducing a temperature-dependent strength
K(T ) to the Kobayashi-Maskawa-’t Hooft (KMT) determinant interaction. T dependence of K(T )
is well determined from the results of state-of-the-art 2+1-flavor lattice QCD simulations on pion
and a0-meson screening masses. Using the EPNJL model, we draw the Columbia plot near the
physical point and determine the order of chiral transition in the light-quark chiral limit with ms

fixed at the physical value.

2. Model setting

2.1 EPNJL model

We start with the 2+1 flavor EPNJL model [4]. The Lagrangian density is

L = ψ̄(iγµDµ − m̂0)ψ +Gs(Φ)
8

∑
a=0

[(ψ̄λaψ)2 +(ψ̄iγ5λaψ)2]

− K(T )
[
det
f , f ′

ψ̄ f (1+ γ5)ψ f ′ +det
f , f ′

ψ̄ f (1− γ5)ψ f ′
]
−U (Φ [A],Φ̄ [A],T ) (2.1)

with quark fields ψ =(ψu,ψd ,ψs)
T and Dµ = ∂ µ +iAµ with Aµ = δ µ

0 g(A0)ata/2=−δ µ
0 ig(A4)ata/2

for the gauge coupling g, where the λa (ta) are the Gell-Mann matrices in flavor (color) space and
λ0 =

√
2/3 I for the unit matrix I in flavor space. The determinant in (2.1) is taken in flavor

space. For the 2+1 flavor system, the current quark masses m̂0 = diag(mu,md ,ms) satisfy a rela-
tion ms > ml ≡ mu = md . In the EPNJL model, the coupling strength Gs(Φ) of the scalar-type
four-quark interaction depends on the Polyakov loop Φ and its Hermitian conjugate Φ̄ as

Gs(Φ) = Gs(0)×
[
1−α1ΦΦ̄

]
. (2.2)
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This entanglement coupling is charge-conjugation and Z3 symmetric.
For T dependence of K(T ), we assume the following form phenomenologically:

K(T ) =

{
K(0) (T < T1)

K(0)e−(T−T1)
2/b2

(T ≥ T1)
. (2.3)

For high T satisfying T ≫ T1, the form (2.3) is reduced to (1.1).
In the EPNJL model, the time component of Aµ is treated as a homogeneous and static back-

ground field, which is governed by the Polyakov-loop potential U . In the Polyakov gauge, Φ and
Φ̄ are obtained by

Φ =
1
3

trc(L), Φ̄ =
1
3

trc(L∗) (2.4)

with L = exp[iA4/T ] = exp[idiag(A11
4 ,A22

4 ,A33
4 )/T ] for real variables A j j

4 satisfying A11
4 +A22

4 +

A33
4 = 0. For zero chemical potential where Φ = Φ̄ , one can set A33

4 = 0 and determine the others
as A22

4 =−A11
4 = cos−1[(3Φ −1)/2].

We use the logarithm-type Polyakov-loop potential of Ref. [5] as U , but we refit the parameter
T0 to 180 MeV in order to reproduce the chiral transition temperature Tc = 154±9 MeV [6, 7, 8]
and deconfinement transition temperature T deconf

c = 170±7 MeV [9].
Making the mean field approximation (MFA) to (2.1) and the path integral over quark fields,

one can get the thermodynamic potential (per unit volume) as

Ω =UM +U −2 ∑
f=u,d,s

∫ d3p
(2π)3

[
3Ep, f +

1
β

ln [1+3(Φ + Φ̄e−βEp, f )e−βEp, f + e−3βEp, f ]

+
1
β

ln [1+3(Φ̄ +Φe−βEp, f )e−βEp, f + e−3βEp, f ]

]
(2.5)

with β = 1/T and Ep, f =
√

p2 +M2
f . The effective quark mass M f is M f = m f − 4Gs(Φ)σ f +

2K(T )σ f ′σ f ′′ with f ̸= f ′ ̸= f ′′. The mesonic potential UM is UM = 2Gs(Φ)(σ 2
u +σ 2

d +σ 2
s )−

4K(T )σuσdσs. Here, σ f means the chiral condensate ⟨ψ̄ f ψ f ⟩ for flavor f . We determine the
mean-field variables (X = σl,σs,Φ ,Φ̄) from the stationary conditions:

∂Ω
∂X

= 0, (2.6)

where isospin symmetry is assumed for the light-quark sector, i.e., σl ≡ σu = σd .
On the right-hand side of (2.5), the first term (vacuum term) in the momentum integral di-

verges. We then use the PV regularization [10]. In the scheme, the integral I(M f ) is regularized
as

Ireg(M f ) =
2

∑
α=0

Cα I(M f ;α), (2.7)

where M f ;0 = M f and the M f ;α (α ≥ 1) mean masses of auxiliary particles. The parameters M f ;α

and Cα should satisfy the condition ∑2
α=0Cα = ∑2

α=0CαM2
f ;α = 0. We then assume (C0,C1,C2) =

(1,1,−2) and (M2
f ;1,M

2
f ;2) = (M2

f +2Λ 2,M2
f +Λ 2). We keep the parameter Λ finite even after the
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subtraction (2.7), since the present model is non-renormalizable. The parameters are taken from
Ref. [11] and they are ml = 6.2 MeV, ms = 175.0 MeV, Gs(0)Λ 2 = 2.35 and K(0)Λ 5 = 27.8 for
Λ = 795 MeV. This parameter set reproduces mesonic observables at vacuum, i.e., the pion and
kaon decay constants ( fπ = 92 MeV and fK = 105 MeV) and their masses (Mπ = 141 MeV and
MK = 512 MeV) and the η ′-meson mass (Mη ′ = 920 MeV). In the present work, we analyze LQCD
results of Ref. [12] for pion and a0-meson screening masses. In the LQCD simulation, the pion
mass Mπ(0) at vacuum (T = 0) is 175 MeV and a bit heavier than the experimental value 138 MeV.
We then change ml to 9.9 MeV in the EPNJL model in order to reproduce Mπ(0) = 175 MeV.

2.2 Meson screening mass

We derive the equations for pion and a0-meson screening masses, following Ref [13, 14]. The
current corresponding to a meson of type ξ is

Jξ (x) = ψ̄(x)Γξ ψ(x)−⟨ψ̄(x)Γξ ψ(x)⟩, (2.8)

where Γπ = iγ5λ3 for π meson and Γa0 = λ3 for a0 meson. We denote the Fourier transform of the

mesonic correlation function ηξ ξ (x)≡ ⟨0|T
(

Jξ (x)J
†
ξ (0)

)
|0⟩ by χξ ξ (q2

0, q̃
2) as

χξ ξ (q
2
0, q̃

2) = i
∫

d4x eiq·xηξ ξ (x), (2.9)

where q̃ =±|q| for q = (q0,q) and T stands for the time-ordered product. Using the random-phase
(ring) approximation, one can obtain the Schwinger-Dyson equations for ξ = π,a0 channels

χξ ξ =
Πξ

1−2Gξ Πξ
(2.10)

with the effective couplings Gπ and Ga0 defined by

Ga0 = Gs(Φ)+
1
2

K(T )σs, Gπ = Gs(Φ)− 1
2

K(T )σs, (2.11)

and the one-loop polarization function Πξ defined by

Πa0 = 4i[I1 + I2 − (q2 −4M2)I3], Ππ = 4i[I1 + I2 −q2I3]. (2.12)

M is the effective light-quark mass and M = Mu = Md . At T = 0, three integrals I1, I2, I3 are
obtained by

I1 =
∫ d4 p

(2π)4 trc

[ 1
p′2 −M

]
, I2 =

∫ d4 p
(2π)4 trc

[ 1
(p′+q)2 −M2

]
,

I3 =
∫ d4 p

(2π)4 trc

[ 1
{(p′+q)2 −M2}(p′2 −M2)

]
(2.13)

with p′ = (p0+ iA4,p). trc means the trace in color space. For finite T , the corresponding equations
are obtained by the replacement

p0 → iωn = i(2n+1)πT,
∫ d4 p

(2π)4 → iT
∞

∑
n=−∞

∫ d3p
(2π)3 . (2.14)

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
2
0
1

Determination of UA(1) restoration from meson screening masses by using EPNJL model Masahiro Ishii

Meson screening mass is defined by the exponential damping of the meson propagator ηξ ξ (r)
in the long distance limit (r → ∞):

Mξ ,scr =− lim
r→∞

d lnηξ ξ (r)
dr

, (2.15)

where ηξ ξ (r) is obtained by the Fourier transform of χξ ξ (0, q̃2) from the momentum q̃ space to the
coordinate space r:

ηξ ξ (r) =
1

4π2ir

∫ ∞

−∞
dq̃ q̃χξ ξ (0, q̃

2)eiq̃r. (2.16)

It is not easy to make this Fourier transformation particularly at large r due to the highly oscilating
function eiq̃r. In order to avoid this problem, one can consider the Fourier transformation as a
contour integral in the complex q̃ plane by using the Cauchy’s integral theorem. However, it is
reported in Ref. [15] that χξ ξ (0, q̃2) has logarithmic cuts in the vicinity of the real q̃ axis and heavy
numerical calculations are necessary for evaluating the cut effects. In our previous work [14], we
showed that these logarithmic cuts are unphysical and removable. If we make the p integral before
taking the Matsubara summation ∑n in (2.14), we can express Ireg

3 (0, q̃2) as an infinite series of
analytic functions:

Ireg
3 (0, q̃2) =

iT
4π q̃ ∑

j,n,α
Cα sin−1

 q̃
2√

q̃2

4 +M2
j,n,α

 (2.17)

with
M j,n,α(T ) =

√
M2

α +{(2n+1)πT +A j j
4 }2, (2.18)

where Mα = Mu;α = Md;α . Each term of Ireg
3 (0, q̃2) has two physical cuts on the imaginary axis,

one is an upward vertical line starting from q̃ = 2iM j,n,α and the other is a downward vertical line
from q̃ = −2iM j,n,α . There are two lowest branch points q̃ = 2iM j=1,n=0,α=0 = 2iM j=2,n=−1,α=0.
We call them “threshold mass” in the sense that they come from the quark- antiquark continuum
state.

We can obtain the meson screening mass Mξ ,scr as a pole of χξ ξ (0, q̃2),[
1−2Gξ Πξ (0, q̃

2)
]∣∣

q̃=iMξ ,scr
= 0. (2.19)

If the pole at q̃ = iMξ ,scr is well isolated from the cut, i.e., Mξ ,scr < 2M j=1,n=0,α=0, one can deter-
mine the screening mass from the pole location without making the q̃ integral.

3. Numerical Results

The EPNJL model has three adjustable parameters, α1 in the entanglement coupling Gs(Φ)

and b and T1 in the KMT interaction K(T ). These parameters can be clearly determined from 2+1
flavor LQCD data [12] for pion and a0-meson screening masses, Mπ,scr and Ma0,scr as shown below.

Figure 1 shows T dependence of Mπ,scr,Ma0,scr. The EPNJL results for Mπ,scr (Ma0,scr) are
represented by solid (dotted) line and LQCD ones are plotted with closed squares (open circles).
Best fitting is obtained, when α1 = 1.0, T1 = 0.79Tc = 121 MeV and b = 0.23Tc = 36 MeV. The
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Fig. 1: T dependence of Mπ,scr and Ma0,scr. The
solid (dotted) line denotes Mπ,scr (Ma0,scr) calculated
by the EPNJL model. LQCD data are taken from
Ref. [12]; closed squares (open circles) correspond to
the 2+1 flavor data for Mπ,scr (Ma0,scr). LQCD data are
rescaled by the factor 154/196.

Fig. 2: Order of chiral transition near phys-
ical point in the ml–ms plane. The value of
log[χll(Tc)] is shown by a change in hue. Sim-
ulation point, physical point, light-quark chiral-
limit point and tricritical point are denoted by S,
P, Cl and TCP. The solid lines stand for second-
order chiral transitions.

parameters thus obtained lead to K(Tc)/K(0) = 0.434 and it indicates the rapid suppression of
K(T ) in the vicinity of Tc, but UA(1) symmetry is not completely restored at Tc. Here, we rescale
the LQCD results of [12] with multiplying them by the factor 154/196 to reproduce Tc = 154±9
MeV. This is because Tc in the simulations [12] is about 196 MeV, although it becomes Tc = 154±9
MeV in finer LQCD simulations [6, 7, 8] close to the continuum limit.

Using the T -dependent KMT interaction, we draw the Columbia plot near the physical point
in ml −ms plane, as shown in Fig. 2. The S point represents the location of (ml,ms) for the LQCD
simulation [12] and it is located at (ml,ms) = (9.9 [MeV],175 [MeV]). S-point is close to light-
quark chiral limit point (Cl), therefore, we can extrapolate the LQCD results [12] from S-point to
Cl-point by using the EPNJL model. Varying both ml and ms, we determine the order of chiral
transition from the divergence of T dependence of chiral susceptibility χll(T ) and the discontinuity
of chiral condensate. The value of log [χll(Tc)] is denoted by a change in hue. In the light-quark
chiral-limit with the strange quark mass (ms) fixed at the physical value ms = mphys

s = 175 MeV,
the chiral transition becomes the second order in the mean field approximation. The second-order
chiral transitions (solid lines) meet at (mtric

l ,mtric
s ) ≈ (0,0.726mphys

s ) = (0[MeV],127[MeV]). This
is a tricritical point (TCP) of chiral phase transition.

4. Summary

In summary, we incorporated the effective restoration of UA(1) symmetry in the 2+1 flavor
EPNJL model by introducing a T -dependent coupling strength K(T ) to the KMT interaction. The
T dependence was well determined from state-of-the-art 2+1 flavor LQCD data on pion and a0-
meson screening masses. The strength K(T ) thus obtained is suppressed in the vicinity of the
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pseudocritical temperature of chiral transition. However, UA(1) symmetry breaking still remains
at Tc. Using the EPNJL model with the present parameter set, we showed that, at least in the
mean field level, the order of chiral transition is second order at the light-quark chiral-limit point of
ml = 0 and ms = 175 MeV (the physical value). This result indicates that there exists a tricritical
point near the light-quark chiral-limit point in the ml–ms plane. We then estimated the location of
the tricritical point as (mtric

l ,mtric
s )≈ (0,0.726mphys

s ) = (0[MeV],127[MeV]).
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