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1. Introduction

There exists a class of asymptotically free gauge theories where the running coupling ap-
proaches a non-trivial infrared fixed point (IRFP) and long-distance physics is conformal. These
theories have applications in model building beyond the standard model, particularly in techni-
color theories, where the electroweak symmetry is broken by the dynamical formation of the chiral
condensate analogously to QCD. In addition to direct applications in particle phenomenology, the
theories with IRFP are interesting from purely theoretical viewpoint of understanding the structure
of gauge field theories. In particular, as a function of number of colours N, flavours N f and fermion
representations, one is interested in determining the boundary where the the IRFP of the theory is
lost and the behaviour becomes generically QCD-like. Where this happens signifies the location of
the edge of the so called conformal window in the gauge theory phase diagram. Typically the fixed
point coupling near this boundary is expected to be large and non-perturbative methods are needed.

In this work we study the running of the coupling in SU(2) gauge field theory with 8 fermions
in the fundamental representation. Analytic estimates suggest that this theory can be expected to
lie within the conformal window, i.e has an IRFP. It has been studied before in [1], but the results
were inconclusive. The phase structure of the model with staggered fermions was studied in [2].

The SU(2) gauge theory with 4–10 fundamental representation fermion flavours has been stud-
ied also earlier [3–6]. In these works, the coupling was measured via the Schrödinger functional
method [7], but the results were inconclusive regarding the location of the edge of the conformal
window. Since the running is slow close to the IRFP, very high accuracy is needed to discern the
continuum behaviour, hindering the progress towards large enough volumes.

In this work we use the gradient flow method [8] with Schrödinger functional boundary con-
ditions [9]. This allows us to control the leading order discretization errors and hence improve the
continuum limit. Preliminary results of this study were published in [10]. Schrödinger functional
boundaries also make it possible to measure the mass anomalous dimension as described in more
detail in [11].

2. Methods and Results

We study the model using a HEX smeared [12], clover improved Wilson fermion action and a
partially smeared plaquette gauge action. The full action can be written as

S = (1− cg)SG(U)+ cgSG(V )+SF(V )+ cSW δSSW (V ),

where V is the smeared gauge field and U is the unsmeared one. As a result of the smearing,
the action is non-perturbatively improved to order a with the Sheikholeslami-Wohlert coefficient
cSW ≈ 1 and we simply choose cSW = 1. The gauge action smearing, tuned by the coefficient cg,
removes the unphysical bulk phase transition from the region of interest in the parameter space. In
our case it is sufficient to choose cg = 0.5.

We also use Schrödinger Functional boundary conditions, which enables us to measure the
mass anomalous dimension of the model from the same dataset. The gauge fields are set to unity
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and the fermion fields are set to zero at time slices x0 = 0,L on a lattice of size L4:

Uk(x) =Vk(x) = 1, ψ(x) = 0 when x0 = 0,L

Uµ(x+Lk̂) =Uµ(x), Vµ(x+Lk̂) =Vµ(x)

ψ(x+Lk̂) = ψ(x).

Here k = 1,2,3 labels one of the spatial directions.
We use the gradient flow method to measure the running coupling. The gradient flow is defined

by introducing a fictitious flow time t and studying how the fields evolve according to flow equation:

∂tBt,µ = Dt,µBt,µν ,

B0,µ = Aµ

Gt,µν = ∂µBt,ν −∂νBt,µ +
[
Bt,µ ,Bt,ν

]
.

Here Bt,µ is the flow field parametrized by the flow time t, and Aµ is the original gauge field. In this
study we evolve the flow fields using the Symanzik gauge action. The flow smears the gauge field
over a radius

√
8t, removing the UV divergences and automatically renormalizing gauge invariant

observables [8].
The coupling is measured from the evolution of the field strength

〈E(t)〉= 1
4
〈
Gµν(t)Gµν(t)

〉
.

To the leading order in perturbation theory in MS scheme, it has the form [13] 〈E(t)〉=N g2/t2+

O(g4). Since the translation symmetry is broken by the boundary conditions, we measure the field
strength only at the middle time slice. The dimensionless renormalized quantity t2 < E(t) > can
then be used to define the renormalized coupling [14]:

g2
GF(µ) = N −1t2 〈E(t)〉 |x0=L/2 , t=1/8µ2 , (2.1)

where the normalization factor N for these boundary conditions has been calculated in [9]. To be
free of both lattice artifacts and finite volume effects the scale µ must be within 1/L� µ� 1/a. To
ensure this we relate the lattice scale with the renormalization scale as µ−1 = cL. Unless otherwise
indicated we use c = 0.4 in our analysis below.

We measure the coupling with several physical lattice sizes and bare couplings in order to
quantify the running using the step scaling function [15]:

Σ(u,a/L) = g2
GF(g0,2L/a)

∣∣
g2

GF (g0,L/a)=u (2.2)

σ(u) = lim
a→0

Σ(u,a/L).

The step scaling function describes how the coupling evolves when the linear size of the system is
increased.

As was observed in [16], the gradient flow coupling suffers from large order (a/L)2 errors.
These can be alleviated with a correction τ0 to the lattice value of the flow time [17]

g2
GF = N −1t2 〈E(t + τ0a2)

〉
= N −1t2 〈E(t)〉+N −1t2

〈
∂E(t)

∂ t

〉
τ0a2. (2.3)
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Figure 1: The continuum limit (2.6) with several values of the flow time correction τ0 with u = 1 (left) and
u = 2.5 (right).
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Figure 2: The plot on the left shows the gradient flow coupling (2.1) measured at each β and L/a at c = 0.4.
The plot on the right shows the lattice step scaling function (2.2) for these couplings. For both pictures τ0

correction (2.4) was used.

The effect of the correction on the step scaling function can be seen in figure 1. As can be seen,
τ0 does change the slope but not the continuum limit of the step scaling function. In the following
results we choose a functional form that approximately removes the O(a2) effects. For the c =

0.3−0.5 we use

τ0 = 0.06log(1+g2). (2.4)

The measured couplings g2
GF and lattice step scaling function Σ with this τ0 correction are shown

in figure 2. The continuum limit of the step scaling function has to be evaluated at constant cou-
pling g2. We use two different methods for this. First method uses the traditional polynomial
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Figure 3: The gradient flow coupling and the interpolating function (2.5).
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Figure 4: The step scaling function with c = 0.4,τ0 = 0.06log(1+u) calculated with two continuum extrap-
olation methods. On the left: traditional coupling interpolation (2.5) for the biggest lattice and continuum
extrapolation (2.6). on the right: power series (2.7) for (a/L)2 +(a/L)3. The solid line is constrained to
perturbative results, while the hashed line is not. 4-loop MS results are show as a guide for the eye.

interpolation:

g2
GF(g0,a/L) =

m

∑
i=1

aig2i
0 , m = 6 (2.5)

shown in figure 3. The continuum limit σ(u) can then be approximated by fitting to a function of
a form:

Σ(u,a/L) = σ(u)+ c2(u)(a/L)2. (2.6)

This method does not utilize the fact that the step scaling σ must follow the universal perturbative
2-loop prediction. As a second method, we carry out a continuum extrapolation, where we present
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σ(u) as truncated power series, parametrize the discretization errors as series in u and do a single
fit to all measured data [18]. This second method has the form:

Σ(u,a/L) = σ(u)+
na

∑
k=2

fk(u)
ak

Lk (2.7)

σ(u) = 1+
n

∑
i=1

siui

fk(u) =
nk

f

∑
l=0

ck,lul ,

where ci and ck,l are fit parameters, si are determined from universal 2-loop β -function i.e. s1 =

2b0 ln(2). We set n = 3, na = 3 and n2
f = n3

f = 4 in order to minimize χ2/d.o.f of the fit. These two
methods are compared in 4. They both follow the perturbative value closely up to g2 = 4 and then
diverge towards a fixed point. While the 4-loop MS result is scheme dependent, the nonperturbative
results obtained with either of the two methods behave similar to it. The power series method seems
to give IRFP at a bit higher value than the traditional approach.

3. Conclusions

We have studied the running coupling in the SU(2) lattice gauge theory with 8 fermions in the
fundamental representation. Gradient flow algorithm with Schrödinger functional boundaries and
flow time correction (2.3) seems to work well even on relatively high couplings. The calculated
step scaling function shows a clear indication of a fixed point. We have also measured the mass
anomalous dimension using the mass step scaling and spectral density methods. The results are
reported in [11].
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