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1. Introduction

Despite its outstanding success, the Standard Model (SM) is incomplete1 and can thus only be con-
sidered an effective model. Due to its renormalizability, and the (seemingly) special value of the
Higgs boson mass, however, its range of validity seems to be huge and it may even be internally
consistent all the way up to the Planck scale [1, 2]. This is both intriguing and challenging, since
any UV completion of the SM must leave most of its observables almost unchanged at the same
time as it solves the problems of the SM, such as dark matter, neutrino oscillations and baryogen-
esis. Yet, although the SM does not require new physics to be important until very high energies,
there is no general reason to exclude new degrees of freedom with masses around a few TeV. Some-
thing similar happens in the Fermi Theory of Weak interactions where the mass of the W -boson of
80 GeV is significantly below 4π 〈φ〉 ≈ 3 TeV, where the theory stops being perturbative.

In this proceeding we study generic effects of Beyond the Standard Model (BSM) physics at
intermediate scales by including the dimension six operator |φ |6 in the SM Higgs sector. Generally,
there are of course many more higher order operators [3] but for simplicity we will let |φ |6 serve as
a proxy for all of them. The main focus will be on the order of the electroweak finite temperature
transition as a function of the Higgs mass Mh and of the coefficient of the dimension six operator,
parametrically given by M−2

BSM, where MBSM can be thought of as the mass of the lightest particle
in the UV completion of the SM which couples to the Higgs boson. The motivation behind this is
to investigate the possibility of electroweak baryogenesis, which, due to one of the three Sakharov
conditions for baryogenesis, can only be viable if there is a first order transition in the electroweak
sector as the universe cools down. With no dimension six operator, the transition is a crossover
for the Higgs mass at its experimental value 125 GeV, and it would only become first order for
a Higgs mass below about 70 GeV [4]. However, in the presence of a |φ |6 operator the critical
value of the Higgs mass can be raised and it is interesting to determine for which value of MBSM

the critical Higgs mass exceeds the experimental value. Since it is not known how to represent the
full SM on the lattice we answer this question in two different simplified versions of it: first in the
Higgs-Yukawa model which neglects all gauge fields but retains the Higgs field and all (massive)
SM fermions, and then in a gauge-Higgs model consisting of the Higgs field and the SU(2) gauge
fields.

2. Higgs-Yukawa model

The Higgs-Yukawa model neglects the gauge degrees of freedom of the SM and consists of the
complex, two component, scalar Higgs field and the massive SM fermions, coupled to the Higgs
field via Yukawa interaction terms. Since, at tree level, the Yukawa couplings y f = M f /〈φ〉 are
proportional to the masses of the fermions M f , and since the top quark mass Mt is of the same
order of magnitude as the Higgs expectation value 〈φ〉, it is important to treat the model nonper-
turbatively. Due to the chiral nature of the Yukawa coupling it is also important to use a chiral
Dirac operator on the lattice, for example the Neuberger Overlap operator. This in turn makes full,
dynamical lattice simulations of the model very demanding and expensive in terms of computer
time. We will follow a different route and solve the model approximately using Extended Mean

1Most obviously due to the fact that it is completely neglecting gravity.
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Field Theory (EMFT) which comprises a self-consistent determination of the Higgs expectation
value and self-energy due to the self- and Yukawa-interactions. In this approximation the fermions
couple to the magnitude |ϕ0| of the Higgs field, which is taken to be constant in space time so that
the Dirac operator Dov factorizes into independent blocks, one for each fermion. The magnitude
varies, however, as we integrate over all the components of the Higgs field. The lattice action takes
the form

S = ∑
x

{
−κ ∑

µ

ϕ
†
x ϕx+µ̂ +h.c.+ |ϕx|2 +4κ

2
λ

(
|ϕx|2−1

)2
+8κ

3
λ6 |ϕ|6

+∑
f

Nc, f TrLog
(

Dov(y f
√

2κ |ϕ0|)
)}

, (2.1)

where κ is inversely proportional to the bare mass squared and where λ6 = (aMBSM)−2. Nc, f is a
multiplicity factor which equals 3 for quarks (number of colors) and 1 for leptons.

This action is then solved using EMFT, see [5] for details, and in particular we determine
the finite temperature phase diagram in the (MBSM,Mh)-plane. As a consistency check, we first
compare the EMFT solution to full Monte Carlo simulations [6, 7], which have been performed
using a restricted version of the model with only the top and bottom quarks, which were further
taken to be mass degenerate (otherwise there is a sign problem), and unit multiplicity factors Nc, f .
In Fig. 1 we show the Higgs expectation value 〈φ〉 as a function of the hopping parameter κ for
various values of the quartic coupling λ at a small value of λ6 = 0.1 (left panel) and at a larger,
nonperturbative value of λ6 = 1 (right panel). The symbols are Monte Carlo data and the dashed
lines are obtained by a perturbative effective model called the Constraint Effective Potential, both
taken from [6, 7]. The solid lines are the EMFT results from this work. Clearly EMFT is an
excellent approximation at all parameter values, in addition to being orders of magnitude cheaper
computationally than the Monte Carlo simulations.
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Figure 1: The Higgs expectation value 〈φ〉 in lattice units for various quartic couplings λ with λ6 = 0.1
(left panel) and λ6 = 1 (right panel). The symbols and dashed lines are Monte Carlo data and Constraint
Effective Potential data respectively, taken from [6, 7]. The solid lines are the EMFT results obtained in this
work.

In order to obtain the full phase diagram in physical parameters, we first determine the order
of the κ-driven transition in the (λ ,λ6)-plane at zero temperature. Without gauge fields the expec-
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tation value of the Higgs field is a true order parameter so the transition can be either of first or
second order as seen in Fig. 1. For any positive value of λ6, there is a tricritical value of λ < 0 for
which the transition turns from second to first order as λ is taken to be more negative. How this
tricritical coupling depends on λ6 can be seen in the left panel of Fig. 2. In the right panel we have
fixed λ6 = 1/4 and we show the phase diagram in the (λ ,κ)-plane. The star denotes the tricritical
point and corresponds to the intersection of the line in the right panel and the line in the left panel
of Fig. 2. We now turn on temperature by making the lattice extent finite in the temporal direction
and study the effect on the tricritical point. Its trajectory as the temperature is increased is indicated
by the arrow in the right panel of Fig. 2 and since it moves into the region of the symmetry broken
phase, we conclude that the symmetry restored phase is expanding, as we know it should since
at very high temperature the model is always in the symmetric phase. The interesting region in
this phase diagram is the shaded gray area between the red first-order line and the trajectory of the
tricritical point. This area is swept out by the first order line as the temperature rises and thus, if
the parameters are such that at zero temperature we are in the broken phase somewhere in the gray
area, for some finite temperature the first-order line will traverse this point and we will go to the
symmetric phase via a first-order phase transition. This is exactly the scenario we are looking for,
except in reverse as the universe cools down.
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Figure 2: Left panel: The tricritical line at zero temperature in the (λ6,λ )-plane. For λ below the line the
transition is first order and above it is second order. Right panel: The phase diagram in the (λ ,κ)-plane for
λ6 = 1/4 at zero temperature. On the blue line the transition is second order and on the red line it is first
order. The star in between is the tricritical point. As the temperature is increased the tricritical point moves
along the black arrow and the first order line sweeps out the gray area which is where a first order finite
temperature transition can be found.

The last step consists of considering curves of fixed φc/Tc inside the gray area, i.e. curves
where the expectation value of the field φc at the critical temperature Tc is constant in units of the
critical temperature. A value of 0 corresponds to the trajectory of the tricritical point itself and
a value of 1 is generally required in order to have a strong enough first-order transition for elec-
troweak baryogenesis to be viable. In the left panel of Fig. 3 we show this curve in the (MBSM,Mh)-
plane for three different values of φc/Tc. The color coding denotes Tc in GeV and the dashed lines
show the experimental value of the Higgs mass Mh and a nominal value for MBSM. We have fixed
the lattice spacing such that aMBSM = 2. In the right panel of Fig. 3 we show the impact the
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fermions have on the result by comparing the trajectory of the tricritical point using all nine mas-
sive SM fermions and that with only the pure Higgs sector. We do this for two different values
of the lattice spacing in terms of MBSM and find that the effect of fermions is rather small and of
indefinite sign, indicating that the physics is dominantly determined by the Higgs self-interaction.
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Figure 3: Left panel: The phase diagram in the (MBSM,Mh)-plane. The lines are lines of constant φc/Tc

where φc is the expectation value at Tc. The solid line where φc/Tc = 0 is the tricritical line. As MBSM is
decreased the transition becomes stronger. The color coding gives Tc in GeV. Right panel: The tricritical line
with and without all massive SM fermions at two different values of aMBSM. The spread of these lines gives
an estimate of the systematic uncertainties of the effective model. The effect of fermions is rather small.

3. Gauge-Higgs model

The gauge-Higgs model consists of the Higgs field and the weak gauge degrees of freedom and thus
neglects all fermionic fields. In the light of the result above this seems well justified. Moreover,
it is an interesting model on its own, where the gauge fields yield important contributions to the
couplings in the thermal effective theory of the Higgs sector [8]. The lattice action for this model
is given by

LGH =−∑
µ

κµφ
†(x)Uµ(x)φ(x+ µ̂)+ |φ(x)|2 +λ

(
|φ(x)|2−1

)2
− 1

2 ∑
µ>ν

βµνReTrPµν(x), (3.1)

where κµ and βµν are the anisotropic hopping parameter and gauge coupling respectively. These
will take different values for the spatial, µ ∈{1,2,3}, and temporal, µ = 4, directions and we define
the bare anisotropy factors to be γ2

κ = κ4/κi and γ2
β
= β4i/βi j. The reason for choosing anisotropic

couplings is that this will allow us to reach higher temperatures without reducing the spatial lattice
size too much and thus the total number of lattice sites can be kept under control. A more complete
description of the model and technical details of the simulations can be found in [9] and [10].

At tree level the bare anisotropy factors should be equal since they both represent the ratio
γκ = γβ = as/at of lattice spacings in the spatial and temporal directions. However, due to quantum
effects they get renormalized and acquire different corrections. So in order to have a renormalized
anisotropy ξ = as/at different from one, γκ and γβ need to be tuned individually. In the Higgs
channel we use the ratio of spatial versus temporal Higgs masses to tune γκ and in the gauge
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channel we use ratios of elongated Wilson loops in spatial versus temporal planes to tune γβ . For
the parameter values we considered they both obtain small corrections, not too different from 1-
loop perturbative values, which however depend rather strongly on the exact values of the bare
couplings.

After the anisotropies have been tuned at zero temperature, we can determine the phase dia-
gram in the (λ ,κ)-plane at finite temperature, which is shown in the left panel of Fig. 4 where a
lattice of size 203× 2 has been used. It is known that the Higgs mass is increasing with λ , so we
expect that for small λ the transition will be first order and for large λ it will be a crossover. Some-
where in between there is a critical value where the transition is second order, in the universality
class of the 3d Ising model [4]. In the right panel of Fig. 4 we show the spatial size dependence of
the Binder cumulant B4 of the magnetization-like observable, which is used to fit the value of λ at
the critical point. The value of the Higgs mass Mh at this point, in units of the W mass, marks the
critical value for which a second order transition can be obtained. In the absence of a |φ |6 term in
the potential, this mass is found to be 67.5(5) GeV, in good agreement with [8].

λ

κ
c

 

 

0.10882

0.10884

0.10886

0.10888

0.10890

0.10892

0.10894

0.10896

0.10898

x10− 4

1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05

MC-data

linear fit

◦ Monte Carlo

Linear fit

aa

×10−4

“Higgs”

“symmetric”

β = 8, Nt = 2, ξ = 4

N −1
s

B
4

 

 

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

λ = 0.000174
λ = 0.000180
λ = 0.000186
λ = 0.000192
λ = 0.000198
λc f itted

λ = 1.98 × 10−4

λ = 1.92 × 10−4

λ = 1.86 × 10−4

λ = 1.80 × 10−4

λ = 1.74 × 10−4

λc fitted

β = 8, Nt = 2, ξ = 4

Figure 4: Left panel: The phase diagram at λ6 = 0. For small values of λ the transition is first order and for
large values it is crossover. Right panel: The Binder cumulant B4 at the pseudo-critical point as a function
of the spatial box size L for different values of λ . We fit this data to find λc where B4 takes the value of the
3d Ising model universality class in the thermodynamic limit.

We now turn on the |φ |6 operator by reweighing the ensembles generated without it. Since
the location of the critical point depends on λ6 ∝ M−2

BSM, the coefficient of |φ |6, a simultaneous
reweighing in κ , λ and λ6 is needed. In the left panel of Fig. 5 we show B4 in the case where
λ6 = 10−7. The critical λ decreases with λ6 but due to the positive curvature generated by the |φ |6
term the Higgs mass increases with λ6. From the linear response of Mh to λ6 we can determine
the trajectory of the tricritical point in the (Mh,MBSM)-plane, which is shown in the right panel of
Fig. 5. This should be compared with the left panel in Fig. 3: we see that the two models yield
consistent results and that they are completely consistent with perturbation theory [11].

4. Conclusions

We have investigated two simplified versions of the Standard Model, the Higgs-Yukawa model
and a gauge-Higgs model, in the presence of a higher dimension operator, |φ |6, parametrically
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Figure 5: Left panel: The same as the right panel of Fig. 4 but for λ6 = 10−7. Right panel: The tricritical
line in the (MBSM,Mh)-plane obtained by extrapolating the linear response from small λ6 = M−2

BSM. Above
the central line in the blue region the transition is a crossover and below it is first order. The red region is
obtained from a tree-level evaluation of the Higgs potential with an additional one-loop thermal mass [11].

suppressed by two powers of a “new physics” energy scale, labeled MBSM. We have determined the
curve in the (Mh,MBSM)-plane (Mh being the Higgs mass) where the electroweak finite temperature
transition turns first order. This is relevant in the context of electroweak baryogenesis where a
strong first order transition is needed in order to fulfill all Sakharov conditions. For the experimental
value of the Higgs mass, Mh = 125 GeV, both models require MBSM to be around 1.5 TeV, which
is well within what will be probed by run II of LHC. The fact that both models yield similar results
indicates that the Higgs potential itself is most important when determining MBSM, whereas the
gauge and fermion degrees of freedom yield only small corrections, captured well by perturbation
theory.
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