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1. Introduction

The fact that 25% of the energy content of the Universe must be accounted for by Dark Matter
(DM) is confirmed by several experiments. Many models have been built to describe the Dark Mat-
ter sector of our Universe and are severely constraints by experimental data obtained directly, indi-
rectly, or using colliders. One interesting scenario is the one of Composite Dark Matter where, as in
baryonic sector, the most abundant particles are “composite”. In this work we consider one particu-
lar realization of a composite dark matter model that breaks electroweak symmetry dynamically[1].
The Dark matter candidate is electrically neutral and its interactions with nucleon receive contri-
butions from Higgs-exchange, from the electric dipole moment (which vanishes in the limit of
degenerate fermions), and at higher order in the operator expansion from a two-photon exchange
vertex, as illustrated in Fig. 1. While the two first contributions have already been investigated in
[2], we compute here the latter contribution and estimate the cross section relevant for direct detec-
tion experiments. Note that such an interaction has also be considered on the lattice in the context
of Stealth Dark Matter[4].
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Figure 1: Illustration of a two-photon interaction with quarks[3].

The model is based on SU(2) gauge field theory with two fermions in the fundamental repre-
sentation. The Lagrangian reads in the continuum :

L =−1
4

Fa
µνFa µν +ψ (i6D−m)ψ, (1.1)

where ψ = (u,d) is a doublet of Dirac spinor fields transforming according to the fundamental
representation and can also be written as :

L =−1
4

Fa
µνFa µν +ψi 6Dψ +

im
2

[
QT (−iσ2)CEQ+

(
QT (−iσ2)CEQ)

)†
]

(1.2)

where σ2 acts on color indices and C is the charge conjugation matrix. Furthermore, we have
defined :

Q =


uL

dL

−iσ2CūT
R

−iσ2Cd̄T
R

 ,and E =


0 0 +1 0
0 0 0 +1
−1 0 0 0
0 −1 0 0

 . (1.3)

We have used qL,R = PL,Rq, q̄L,R = q̄PR,L with PL = 1
2(1− γ5) and PR = 1

2(1 + γ5). The model
exhibits an SU(4) flavour symmetry in the massless limit. The 15 generators of the corresponding
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Lie algebra will be denoted T a=1,...,15. After adding a mass term, the remnant flavour symmetry is
the group spanned by the algebra that preserves ET a,T +T a,T E = 0. This relation defines the 10-
dimensional algebra of the SP(4) group. The chiral symmetry breaking pattern is thus expected to
be SU(4)→ SP(4) leading to 5 Goldstone bosons. The model has been investigated on the lattice
in [5], and the chiral symmetry breaking pattern has been proven to be the expected one [6].

As proposed in [1], the Lagrangian Eq. (1.1) can be embedded into the Standard Model in
such a way that it interpolates between composite Goldstone Higgs and Technicolor models[7, 8].
The two limits are parametrized by a single parameter whose value depends on contribution from
Standard Model loops. In the so-called technicolor limit the model breaks electroweak symmetry
and 3 of the Goldstone bosons provide mass to W’s and Z gauge bosons while the two remaining
Goldstone bosons are stable and can be arranged in a electrically neutral complex scalar field, de-
noted φ ,which is a Dark Matter candidate. As argued in [1], the Dark Matter mass is generated
via loop diagrams involving electroweak bosons and top quarks, they predict that the mass is pro-
portional to the scale fΠ = 246GeV, and we will thus restrict ourselves to mφ < 500GeV. Note
that the SU(2) gauge theory with two fundamental fermions have been used to build several Dark
Matter models[4, 9, 10, 11, 12].

In this model the two quark (UL,DL) are arranged in a SU(2)L doublet with hypercharge 0,
and the two remaining (Weyl) fermions are singlet of SU(2)L with hypercharge ±1/2. The electric
charge matrix of the fermions is Q = diag

(1
2 ,−1

2 ,−1
2 ,

1
2

)
.

2. Electromagnetic properties

Since the underlying fermions are not electrically neutral, the effective theory describing the
composite (Goldstone) Dark Matter candidate is expected to generate a two-photon coupling. The
goal of this work is to investigate that particular contribution. The low energy coupling constant
that enter into the process φφ → γγ is called the polarizabity (measured in [ fm]3) and enter in
the compton cross section which can be computed in chiral perturbation theory. In order to per-
form a lattice calculation, a different approach is followed. As shown in [13], the polarizability
also characterizes the response of the mass of a spin-0 neutral bound state to a classical constant
electromagnetic field according to the following small field expansion :

m(E ) = m0 +
1
2

4παEE 2 + . . . , (2.1)

where αE is the electromagnetic polarizability. The latter relation suggests a first principle approach
to calculate the polarizability and has been used in QCD to determine polarizabilities of various
hadrons, see for instance [14]. We briefly sketch the method in the following. In order to fulfill the
’t Hooft condition[15], the electric field needs to be quantized according to

E = (ea2)−1 2πn
QNtNL

≡ (ea2)−1E , (2.2)

where e is related to the electromagnetic coupling constant α = e2/(4π), a is the lattice spacing,
Q the charge of fermion, n is an integer, and Nt ,Nl are the temporal and spatial lattice extent. Note
furthermore that we have introduced the dimensionless lattice field E. The gauge links are then
multiplied by a position dependent field U (E)

µ defined as follows :

U (E)
µ = eiQAµ (x)eiQENt x3δµ,4δx4 ,Nt−1 , where Aµ(x) = (0,0,−Ex4,0) , (2.3)
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Q is the electric charge of the fermion, Nt is the lattice temporal extent. In our calculation, the
electromagnetic background field is included only in the valence which leads to a systematic un-
certainty. We however expect the calculation to provide an order of magnitude estimate of the
polarizability.

In our model the dark matter candidate has the same quantum numbers as the following di-
quark operator uTCγ5σ2d. The mass as function of the electric field can be estimated by computing
the effective mass corresponding to the following two-point function :

CE
2pt(t) = ∑

~x
〈φ(x)φ †(0)〉=CE ,π0

2pt,conn.(t) . (2.4)

The last equality -which relates CE
2pt(t) to the connected part of the neutral pion two-point function-

can be derived using properties of the Wilson-Dirac operator for a two-color theory in a presence
of a background field.

Note that by inspecting the corresponding effective theory, we concluded that a polarizability
operator is generated at order O(E6) by an operator of the form m2

φ
FµνFµνφ ∗φ . The polarizability

is thus expected to vanish in the chiral limit. Note that FµνFµν∂ρφ∂ ρφ also appears in the effective
theory. The latter is not expected to vanish in the chiral limit and will thus dominate the cross
section for very light DM mass. We will disregard that contribution in this preliminary study.

0 5 10 15

0
.6

0
.7

0
.8

0
.9

1
.0

t/a

m
e

ff
 (

t)

0 5 10 15

0
.6

0
.7

0
.8

0
.9

1
.0

t/a

m
e

ff
 (

t)

0 5 10 15

0
.6

0
.7

0
.8

0
.9

1
.0

t/a

m
e

ff
 (

t)

0 5 10 15

0
.6

0
.7

0
.8

0
.9

1
.0

t/a

m
e

ff
 (

t)

0 5 10 15

0
.6

0
.7

0
.8

0
.9

1
.0

t/a

m
e

ff
 (

t)

0 5 10 15

0
.6

0
.7

0
.8

0
.9

1
.0

t/a

m
e

ff
 (

t)

0 5 10 15

0
.6

0
.7

0
.8

0
.9

1
.0

t/a

m
e

ff
 (

t)

0 5 10 15

0
.6

0
.7

0
.8

0
.9

1
.0

t/a

m
e

ff
 (

t)

0 5 10 15

0
.6

0
.7

0
.8

0
.9

1
.0

t/a

m
e

ff
 (

t)

0 5 10 15

0
.6

0
.7

0
.8

0
.9

1
.0

t/a

m
e

ff
 (

t)

0 5 10 15

0
.6

0
.7

0
.8

0
.9

1
.0

t/a

m
e

ff
 (

t)

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

n = 8

n = 9

n = 10

Figure 2: Effective masses for β = 2.2, L= 163×
32 and m0 =−0.65 for values of the electric field
corresponding to n = 0, . . . ,10.
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Figure 3: α̃E assuming a quadratic or a quartic
fit ansätz as a function of the number of points
included in the fit for β = 2.2, L = 163× 32 and
m0 =−0.65

3. Results

The simulation are performed using two flavour Wilson fermions with the plaquette action.
Two lattice spacing are used in this work and the pseudoscalar decay constant fPS is renormalized
perturbatively. Furthermore since the we are considering only the case θ = π/2 (technicolor limit),
the scale is set by imposing FΠ = 246GeV.
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In Fig. 2 we show the effective mass defined by solving the equation

C(t−a)
C(t)

=
e−meff(t)(t−a)+ e−meff(t)(T−(t−a))

e−meff(t)t + e−meff(t)(T−t)
, (3.1)

for values of the electric field with n = 0, . . . ,10. The results show clear plateaus and the masses
are obtained by fitting the effective masses for t/a larger than the vertical dotted line. Once the
mass has been determined for each value of n, the dimensionless electric field dependence is fitted
according to :

aM(E) = aM0 +
1
2

4πα̃EE2 +O(E4), where α̃E =
αE

4παa3 . (3.2)

The relation between α̃E and αE can be derived by matching Eq. (2.1) and using the definition
Eq. (2.2). We show in Fig. 3 the fitted value of α̃E assuming a quadratic or a quartic fit ansätz as
a function of the number of points included in the fit (Npoints). For Npoints, the two estimations of
α̃E are of the same order of magnitude indicating that the contribution from the quartic coefficient
is small. Also, the value of α̃E does not depend strongly on Npoints and the fit is thus stable. Note

furthermore that the expansion variable of Eq. (2.1) : (eE )2

m4
PS
∼ 0.03n2 is small even for the smallest

quark mass used in our setup.
In Fig. 4, we show the dependence of α̃E as a function of mPSL for two ensembles at fixed

β = 2.2. Note that the lightest fermion mass is included in the plot (m0 =−0.75). Since our results
do not depend significantly of the volume, we conclude that finite volume effects are negligible in
our results. In Fig. 5, we show the dimensionless quantity αEmPS f 2

PS as a function of m2
PS ≡ m2

φ

at two different lattice spacing. We choose that particular combination because we expect it to
cancel the leading order behaviour of αE . Note that the results obtained at β = 2.0 show that our
results are not significantly affected by lattice O(a) effects. They are thus safely neglected in the
following. We performed a polynomial fit of αEmPS f 2

PS imposing that αEmPS f 2
PS vanishes in the

chiral limit as required by the effective field theory. The best fit value obtained at fixed β = 2.2 is
depicted by a dotted line. Using the relation between fPS and mPS from our previous work [5], we
deduce a prediction for αE(m2

φ
).

Following [4], the effective interaction Lagragian between DM and photons can be written
L = παEFµνFµνφ ∗φ and the cross section per nucleon for a given target with atomic and mass
number (Z,A) can be written as follows :

σnucleon(Z,A) =
Z4

A2

9πα2µ2
nφ
(MA

F)
2

R2 α
2
E , (3.3)

where µnφ is the reduced mass, α is the electromagnetic coupling constant, R = 1.2A1/3 and
1 < MF

A < 3 which enters in the nuclear part of the cross section. We refer to [4], for a detailed
discussion of the assumption made to estimate the cross section.

Using our prediction of αE(m2
φ
) we plot by a blue band, whose width is determined by the large

uncertainty on the matrix element MF
A , the cross section per nucleon for Xenon in Fig. 6. In the fig-

ure, we also represented by a grey area the latest constraints obtained by the LUX experiments[16].
The orange filled area is the region of cross section were experiments are not able to discriminate a
nucleon-DM event from a coherent neutrino recoil [17]. We conclude that, within our assumption,
the cross section due to two photon exchange is orders of magnitude too small to be detected.
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Figure 4: α̃E as a function of mPSL for two en-
sembles at β = 2.2, including the lightest fermion
mass used in our simulation.
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Figure 6: Prediction of the nucleon-DM cross section per nucleon for Xenon (blue band), con-
straints set by the LUX experiments[16], and region were experiments are not able to discriminate
from coherent neutrino recoil[17].
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4. Conclusion

We considered the interesting framework of a unified composite Higgs and technicolor models.
We argued that in the technicolor limit the model features a DM candidate. Because of its composite
nature, the DM candidate is sensitive to electromagnetic interaction via the electric polarizability
of the DM. We performed a lattice calculation in isolation of the SM of the electric polarizability
using the background field method. We concluded that the expected cross section is to small to
be accessible via direct detection. In future works we plan to investigate what happens beyond the
technicolor limit of the model and to study the effect of electroweak corrections to the nucleon-DM
cross section.
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