
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
2
5
7

Nonperturbative Renormalization in the RI-SMOM
Scheme and Gribov Uncertainty in the RI-MOM
Scheme for Staggered Bilinears

Weonjong Lee, Jeonghwan Pak, Sungwoo Park*

Lattice Gauge Theory Research Center, CTP, and FPRD,
Department of Physics and Astronomy,
Seoul National University, Seoul 08826, South Korea
E-mail: wlee@snu.ac.kr

Jangho Kim
National Institute of Supercomputing and Networking,
Korea Institute of Science and Technology Information
Daejeon, 34141, South Korea
E-mail: fraise36@hanmail.net

SWME Collaboration

We present results of renormalization factors for bilinear operators obtained using the nonpertur-
bative renormalization method (NPR) in the RI-SMOM schemes. The operators are constructed
using HYP staggered quarks on the MILC asqtad lattice (N f = 2+1). We compare results in the
RI-SMOM schemes with those in the RI-MOM scheme for the V ⊗S and S⊗S operators. Since
we use Landau gauge fixing, we study the effect of Gribov ambiguity on the wave function renor-
malization Zq in the RI-MOM scheme. We find that the Gribov uncertainty is negligibly small for
Zq in the RI-MOM scheme.

The 33rd International Symposium on Lattice Field Theory
14 -18 July 2015
Kobe International Conference Center, Kobe, Japan

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:wlee@snu.ac.kr
mailto:fraise36@hanmail.net


P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
2
5
7

RI-SMOM and Gribov Uncertainty Sungwoo Park

1. Introduction

In Ref. [1], the SWME collaboration reported that there exists 3.4σ tension in εK (indirect
CP violation parameter in neutral kaons) between the experiment and the theoretical evaluation
directly from the standard model (SM) with the lattice QCD inputs. In order to determine εK

theoretically, we need to know the kaon bag parameters such as BK (in the SM) [2] and B2−5 [3]
(in the BSM1). Here, we need to know the matching factors which convert lattice data for Bi into
the corresponding quantities defined in the MS scheme in the continuum. Here, we use the non-
perturbative renormalization (NPR) method to determine the matching factors in the RI-SMOM
scheme [4]. The results will be compared with those in the RI-MOM scheme [5]. We will also
address Gribov ambiguity in NPR [6].

2. NPR of Staggered Bilinears in the RI-SMOM Scheme

A general staggered bilinear operator can be written as

OS⊗F
i (y) = ∑

AB
χ i(yA)(γS⊗ξF)ABUi;AB(y)χi(yB) (2.1)

where (γS⊗ξF)AB = 1
4 tr[γ†

AγSγBγ
†
F ] and γA = γ

A1
1 γ

A2
2 γ

A3
3 γ

A4
4 . The original coordinate is yA = 2y+A

where A,B are hypercube vectors (each element is 0 or 1). y is the hypercube coordinate on the
lattice with its spacing 2a. S and F stand for the spin and taste degree, respectively. i is the gauge
configuration index and it will be averaged over gauge ensemble when we calculate the correlation
function. χ and χ are the staggered quark fields. Here, we use the HYP-blocked fat links for Uµ .

We can obtain the amputated Green’s function Λ̃S⊗F
c1c2

(p̃1 +πA, p̃2 +πB) for the bilinear oper-
ators by removing the external quark lines as in Ref. [5]. Here, we use the reduced momentum
p̃1 ∈ (− π

2a ,
π

2a ]
4 defined in the reduced Brillouin zone. For details, refer to Ref. [5].

We define the projected amputated Green’s function Γ as

Γ
αβ (p̃1, p̃2) = ∑

AB
∑
c1c2

[Λ̃α
c1c2

(p̃1 +πA, p̃2 +πB)P̂β

BA;c2c1
], P̂β

BA;c2c1
=

1
48

(γ†
S′⊗ξ

†
F ′)BAδc2c1 (2.2)

where α = (γS⊗ξF), β = (γS′⊗ξF ′), and (γS⊗ξF)AB = 1
16 ∑CD(−1)A·C(γS⊗ξF)CD(−1)D·B.

2.1 RI-SMOM schemes

In the RI-SMOM renormalization scheme, we use symmetric momentum p̃2
1 = p̃2

2 = q̃2 at the
subtraction momentum q̃ ≡ p̃1− p̃2. The subtraction scheme is that Γ

αβ

R (p̃1, p̃2) = δαβ , where
the sub-index R represents the renormalized quantity. We define renormalization factors Z by
Γασ

R = ∑β Z−1
q Zαβ Γ

βσ

B where where the sub-index B represents bare (=unrenormalized) quantity.
Let us consider the conserved vector current. There are three different projection methods

available in this case [4]. The first choice is the RI-SMOMγµ
scheme in which the subtraction

scheme is defined as

Γ
V⊗S
R (p̃1, p̃2)|smom ≡

1
4 ∑

µ

∑
AB

∑
c1c2

[Λ̃
Vµ⊗S
c1c2 (p̃1 +πA, p̃2 +πB)P̂

Vµ⊗S
BA;c2c1

]smom = 1 . (2.3)

1Here, BSM means physics beyond the standard model.
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n1 n2 (ap̃)2 (ap̃)4 GeV
(1,1,0,0) (1,0,1,0) 0.1974 0.0195 0.7363
(2,2,0,0) (2,0,2,0) 0.7896 0.3117 1.4727
(3,3,0,0) (3,0,3,0) 1.7765 1.5780 2.2090
(4,4,0,0) (4,0,4,0) 3.1583 4.9873 2.9454
(5,5,0,0) (5,0,5,0) 4.9348 12.1761 3.6817

(a) Simple momenta

n1 n2 (ap̃)2 (ap̃)4 GeV
(1,2,3,0) (−2,3,1,0) 1.3817 0.9546 1.9482
(2,4,2,0) (−2,2,4,0) 2.3687 2.8054 2.5508
(1,3,4,0) (−3,4,1,0) 2.5661 3.2924 2.6549

(b) Complicated momenta

Table 1: List of symmetric momenta: ap̃µ ≡ 2π

Lµ
nµ with L3

S×LT = 203×64. p̃2 = ∑
µ

p̃2
µ and p̃4 = ∑

µ

p̃4
µ .

The second choice is the RI-SMOM scheme in which the subtraction scheme is

Γ
V⊗S
R (p̃1, p̃2)|smom ≡

1
q̃2 ∑

µ

∑
AB

∑
c1c2

[q̃µ Λ̃
Vµ⊗S
c1c2 (p̃1 +πA, p̃2 +πB)∑

ν

q̃ν P̂Vν⊗S
BA;c2c1

]smom = 1 , (2.4)

where q̃ = p̃1− p̃2. One advantage of this scheme is that its anomalous dimension for Zq is already
known up to the 4-loop level [4]. The third choice is the RI-SMOM-sin scheme in which the
subtraction scheme is defined as

Γ
V⊗S
R (p̃1, p̃2)|smom ≡

1
q̂2 ∑

µ

∑
AB

∑
c1c2

[q̂µ Λ̃
Vµ⊗S
c1c2 (p̃1 +πA, p̃2 +πB)∑

ν

q̂ν P̂Vν⊗S
BA;c2c1

]smom = 1 , (2.5)

where q̂µ ≡ sin(aq̃µ) and q̂2 = ∑µ q̂2
µ .

The conserved current does not receive any renormalization and so ZV = 1. Hence, Γ
V⊗S
R =

Z−1
q ZV Γ

V⊗S
B = 1 leads to Zq = Γ

V⊗S
B . Similarly, another Ward identity ZS · Zm = 1 leads to the

identity Zm = Γ
S⊗S
B /Γ

V⊗S
B . Here, note that the running of Zm is different between RI-SMOMγµ

and
(RI-SMOM & RI-SMOM-sin) schemes [7].

2.2 Simulation Details

We use N f = 2+ 1, 203× 64 MILC asqtad ensembles (a ≈ 0.12 f m, am`/ams = 0.01/0.05).
Valence quarks are HYP-smeared staggered fermions with (amq = 0.01, 0.02, 0.03, 0.04, 0.05). We
use 10 gluon configurations with Landau gauge fixing. We calculate ΓO

B (m, p̃2) with external quark
momenta p̃ listed in Table 1. First, we obtain ZO at µ2

1 = q̃2. Second, we use the RG evolution from
the scale µ1 to the common scale µ0 = 3 GeV. In the RG running, we use the anomalous dimension
obtained using the perturbation theory as in Refs. [7, 8].

2.3 Chiral extrapolation

Here, we perform the chiral extrapolation for Zq and Zm. In Fig. 1, we present results of chiral
extrapolation in Zq and Zm. The data in the plots are obtained at the common scale µ0 = 3 GeV with
a momentum of (3,3,0,0) in the RI-SMOM scheme. Here, we use the quadratic fitting to obtain Zq

and Zm in the chiral limit. The fitting results are summarized in Table 2.

2.4 Results: Momentum Fit for Zq

Here, we explain the p-fit procedure for Zq. In the case of Zq, we have tried to fit the data
of both simple and complicated momenta to fitting functional forms up to O((ap̃)6), and we have
failed in finding a reliable fitting. In this case, we find typically that χ2/d.o.f≈ 10+6. In Fig. 2 (a),
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Figure 1: Chiral extrapolation of Zq in RI-SMOM scheme at µ0 = 3 GeV. Black circled points are the chiral
limit data obtained from the fitting.

c0 c1 c2 χ2/d.o.f
Zq 0.79558(20) 0.0180(46) -0.114(52) 0.0041(45)
Zm 1.02282(53) -0.107(18) -0.18(20) 0.011(12)

Table 2: Fitting result of chiral extrapolation in the Fig. 1 where fitting the function is c0+c1(am)+c2(am)2.

we show ∆Zq = Zq(data)− f (ap̃) as a function of (ap̃)2. Here, f (ap̃) is a trial fitting function.
Large deviation of data points from zero indicates that the fitting function does not describe the
data at all. Hence, we decide dropping out data of complicated momenta in the fitting.

We have only 4 data points of simple momenta. The fitting functional form is

f (ap̃) = d0 +d1(ap̃)2 +d2((ap̃)2)2 +db
3
(
(ap̃)2)3

+db
4
(
(ap̃)2)4

(2.6)

Here, note that there is no term like (ap̃)4 since it is not independent of ((ap̃)2)2. First, we fit the
data with a fitting function of the first three terms up to O(((ap̃)2)2). Then, we obtain the fitting
scale Λn using the identity:

(
p̃2/Λ2

n
)n

= dn
(
(p̃a)2

)n. The first trial fit gives Λ1 and Λ2. From these
values, we find that the minimum bound for Λi is Λ ≈ 4 GeV. Using this Λ, we set the Bayesian
prior information for the higher order terms such that db

n = 0±σn with σn = (Λa)−2n.
For example, on the MILC coarse (a ≈ 0.12 fm) ensemble with am`/ams = 0.01/0.05, the

Bayesian prior constraints are db
3 = 0± 0.005 and db

4 = 0± 0.0009. In Fig. 2 (b), we present the
constrained fitting results for the data set of simple momenta. We find that results of Zq in the three
RI-SMOM schemes converge into a point in the limit of (ap̃)2 = 0.

2.5 Results: Momentum Fit for Zm

Results for Zm are obtained by dividing Γ
S⊗S
B by Γ

V⊗S
B . Hence, most of lattice artifacts are

canceled between the numerator and denominator, which allows us to fit the data of both simple
and complicated momenta to the fitting functional form:

f(2) = c1 + c2(ap̃)2 + c3(ap̃)4/(ap̃)2 (2.7)

f(4) = f(2)+ c4((ap̃)2)2 + c5((ap̃)4)+ c6((ap̃)4/(ap̃)2)2 + c7(ap̃)6/(ap̃)2 (2.8)

f(6) = f(4)+ c8((ap̃)2)3 + c9(ap̃)2(ap̃)4 + c10((ap̃)4)2/(ap̃)2 + c11(ap̃)6

+ c12(ap̃)4(ap̃)6/((ap̃)2)2 + c13(ap̃)8/(ap̃)2 (2.9)
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Figure 2: P-fit results for Zq in the RI-SMOM schemes: (a) results of ∆Zq with both simple and complicated
momenta, and (b) Zq fits with only simple momenta. Here, c-mom (s-mom) represents complicated (simple)
momenta.

where the sub-index n of f(n) represents the order O((ap̃)n) of highest order terms included in the
fit.

In Fig. 3, we present fitting results for Zm in the RI-SMOMγµ
scheme. In this fit, we choose f(4)

as the fitting function and impose the Bayesian constraints on c4−7: ci = 0±σ and σ = 1/(aΛ)4

with Λ = 4 GeV for i = 4, . . . ,7. On the MILC coarse lattice, this means that ci = 0± 0.03. We
define xm as

xm = Zm(data)−〈c3〉(ap̃)4/(ap̃)2−〈c5〉(ap̃)4−〈c6〉((ap̃)4/(ap̃)2)2−〈c7〉(ap̃)6/(ap̃)2 . (2.10)

Hence, xm represents Zm with its lattice artifacts removed and ∆Zm = Zm(data)− f(4) corresponds
to the fitting quality. We present xm on Fig. 3 (a), and ∆Zm on Fig. 3 (b). In this fit, χ2/d.o.f. =
0.20(28).
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Figure 3: P-fit results for Zm in the RI-SMOMγµ
scheme: (a) xm and (b) ∆Zm.

In Fig. 4, we show results for Zm in the RI-SMOM scheme. In this fit, we choose f(6) as
the fitting function and impose the Bayesian prior conditions on c4−13. For c4−6, ci = 0±σ4 and
σ4 = 1/(aΛ)4 with Λ = 4 GeV. For c7, c7 = 0±3σ4, in order to make the fitting results consistent
with the constraints. For c8−13, c j = 0±σ6 and σ6 = 1/(aΛ)6 with Λ = 4 GeV. On the MILC
coarse lattice, this means that σ4 = 0.03 and σ6 = 0.005. We define ym as

ym = Zm(data)−〈c3〉(ap̃)4/(ap̃)2−〈c5〉(ap̃)4−〈c6〉((ap̃)4/(ap̃)2)2−〈c7〉(ap̃)6/(ap̃)2
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Figure 4: P-fit results for Zm in the RI-SMOM scheme: (a) ym and (b) ∆Zm.

−〈c9〉(ap̃)2(ap̃)4−〈c10〉((ap̃)4)2/(ap̃)2−〈c11〉(ap̃)6

−〈c12〉(ap̃)4(ap̃)6/((ap̃)2)2−〈c13〉(ap̃)8/(ap̃)2 . (2.11)

Thus, ym represents Zm with its lattice artifacts removed. We also redefine ∆Zm = Zm(data)− f(6).
We show ym on Fig. 4 (a) and ∆Zm on Fig. 4 (b). The fitting quality is χ2/d.o.f. = 1.15(86).

In Table 3, we summarize our preliminary results for Zq and Zm at µ = 3 GeV in the MS
scheme.

int. scheme ZMS
q (µ) ZMS

m (µ)

RI-SMOMγµ
1.053(1)(15) 0.920(1)(14)

RI-SMOM 0.984(1)(4) 0.948(7)(14)
RI-SMOM-sin 0.984(2)(4) 0.976(7)(15)
RI-MOM 1.060(8)(4) 0.94(11)(0)

Table 3: Results of Zq and Zm in the MS scheme at µ = 3 GeV. They are obtained using the RI-SMOM
schemes as an intermediate scheme. The first error is purely statistical, and the second systematic which
comes from the truncation of higher order terms in perturbative matching. Here, all the results are prelimi-
nary in that the error budget is incomplete.

3. Gribov Uncertainty in RI-MOM

Landau gauge fixing is done by maximizing the functional F : F = 1/(2Nc ·4V )∑µ,x Tr[Uµ(x)+
Uµ(x)†]. where Nc = 3, and V is 4-dimensional volume, and Uµ is a gluon link field. In practice,
the gauge fixing condition is checked by monitoring θ ≡ 1/(NcV ) ·∑x Tr[∆(x)∆†(x)] such that
θ < 10−14. Here, note that ∆(x) ≡ 16iNcV δF

δωa(x)T
a. We use the Fourier accelerated steepest de-

scent algorithm [9] to maximize F .
It is well known that Landau gauge fixing has Gribov ambiguity [6]: two independent gauge

configurations (Gribov copies) can satisfy the same gauge fixing condition. In general, we can
distinguish different Gribov copies from one another by monitoring their values of F since F is
gauge-dependent. We start with a mother gauge configuration which has F = Fm. Then we apply
randomly gauge transformation to the mother in order to produce a daughter configuration which
has F = Fd 6= Fm. We repeat this procedure 100 times to generate 100 daughter configurations.
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Figure 5: Gribov ambiguity in Zq: (a) m-fit and (b) p-fit of ∆ZG
q = Z̃q−Zq.

Then, we pick the daughter with Fmax
d which maximize δF = |Fm−Fd |. We measure Zq on the

mother and the daughter with F = Fmax
d .

In Fig. 5, we present results for ∆ZG
q = Zq(daughter)−Zq(mother). It turns out that the sys-

tematic error due to Gribov ambiguity is negligibly small (≈ 0.02%).
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