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1. Introduction

Knowledge of renormalized quark mass parameters has been improved significantly in recent
years from lattice QCD methods. Precise determination of these are important for BSM phe-
nomenology and the search for new physics. For example, precision measurements of Higgs cou-
plings to b and c quarks at future colliders must be combined with similarly precise SM mass
determinations in order to detect deviations from the SM [1]. Currently, uncertainties in b and c
masses are at the percent to few-percent level. Reducing uncertainties to the sub-percent level is
a challenge which requires input from multiple lattice groups, as well determinations from multi-
ple methods. Both of these help ensure a robust estimate of uncertainties which may stem from
systematics in either formulation or method.

There have been several recent lattice determinations of charm mass from different groups,
which are broadly in agreement with one another (a recent summary of these can be found in [2]).
The most precise of these at present come from the “current-current correlator” method [3, 4] in
simulations using a Highly Improved Staggered Quark (HISQ) action, which allows a relativistic
treatment of charm, on n f = 2+1 and n f = 2+1+1 ensembles, plus continuum QCD perturbation
theory through O(α3

s ). Results from an application of this method using domain-wall fermions
were also presented at this conference [5]. A precise value for mc can be translated into precise
ms,mud values using bare quark mass ratios [6].

The c,s,ud masses can also be obtained from n f = 2+ 1+ 1 HISQ simulations using non-
perturbative renormalization (NPR) methods. RI/MOM results on n f = 2+ 1 asqtad ensembles
were presented in [7], and in an ongoing determination with HYP-smeared valence quarks [8, 9].
Here we present first results for both RI/MOM and RI/SMOM schemes using the HISQ action.
Sec. 2 describes the basic methodology with Secs. 2.2 and 2.3 presenting more details on the
RI/MOM and RI/SMOM schemes respectively.

2. NPR method

The MS renormalized quark mass is related to the bare lattice input mass m0,

mMS(µ) = ZMS
m (µ,1/a)m0 . (2.1)

In practice it is difficult to compute the factor ZMS
m (µ,1/a) beyond O(αs) using lattice perturbation

theory, especially with improved actions (Zm was calculated to O(α2
s ) using the asqtad action

in [10]).
An alternative method was proposed in [11], which breaks the problem into two steps. The

first step makes use of an intermediate Regularization Independent (RI) scheme that is well-defined
both on the lattice and in the continuum. Using this scheme the renormalization conditions are
imposed directly on lattice correlation functions. In this way one obtains Z-factors to all orders in
αs, however this determination will be sensitive to discretization errors as well as non-perturbative
effects. Therefore the method requires that the renormalization condition be applied within a range

ΛQCD� |p| �
π

a
. (2.2)

This ensures both discretization effects and non-perturbative contributions are small.
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The second step then uses a conversion factor, computed using continuum perturbation theory,
to convert the Z-factor to the MS scheme. The continuum conversion factors are generally known
to higher order than the lattice to continuum factors. It should be noted results obtained from the
first step are universal and the second step is only necessary if one requires results in a non-RI
scheme such as MS.

2.1 Calculation details

Results presented here were calculated on a single coarse (a≈ 0.12 fm) n f = 2+1+1 HISQ
ensemble [12], with lattice volume L3×T , L = 20, T = 64, and with sea masses of amc = 0.635,
ams = 0.0509, and aml = 0.0102. The configurations are fixed to Landau gauge. Propagator
inversions were with valence masses amval = 0.0509, 0.0102, and 0.00501.

Inversions were done using momentum sources, and with a variety of momentum values. For
the RI/MOM results the momenta either have the form 2π(x/L, x/L, x/L, 3x/T ) for x = 1,2,3 or
(x,x,x,0). The latter were computed using twisted boundary conditions and are not restricted to lat-
tice Fourier modes. RI/SMOM results have p1 = 2π(x/L, 0, x/L, 0) and p2 = 2π(x/L,−x/L, 0, 0)
with x = 3,4,5.

2.2 RI/MOM scheme

We calculate off-shell Landau gauge-fixed Green functions of bilinear operators with external
quark states, these have the form

Gi j
Γ
(p) = 〈qi(p)

(
∑
x

q̄(x)Γq(x)
)

q̄ j(−p)〉amp . (2.3)

The i and j indices represent both spin and color. The renormalization factors are obtained by
requiring that an appropriate trace of the correlation function in the interacting theory equal its
tree-level value.

ΛΓ(p)≡ 1
12

Tr [ΓGΓ(p)]'
Zq(p)
ZΓ(p)

(2.4)

The RI and MS schemes satisfy Zm = Z−1
S = Z−1

P , so that with the wavefunction renormaliza-
tion factor Zq it is possible to obtain Zm from the scalar and pseudoscalar correlators. Zq may be
obtained from the momentum-space (polespace) propagator itself.

Z′q(p′2) =− i
12NT

∑
µ

p′µ
p′2

(γµ ⊗1)S−1(p′) (2.5)

(The polespace propagator assumes a continuum-like form but with NT = 4 taste degrees of free-
dom, details may be found in [13].) In principle Zm could be obtained from the trace of the inverse
propagator, but this quantity also contains a quark condensate contribution which is significant for
momenta satisfying Eq. (2.2). This condensate also strongly affects ΛP, causing it to differ from
ΛS especially at low momentum where it is not suppressed.

Some results for ΛS and ΛP are shown in Fig. 1. ΛP exhibits strong mass dependence due
to the condensate term, especially in the infrared, while ΛS has much milder behavior. These two
quantities are compared more directly in Fig. 3 (left), and it is evident that they approach one
another at large p2 where the condensate term is suppressed.
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Results for Zq are shown in Fig. 2. This quantity has almost no visible mass dependence.
The filled points were computed using twisted boundary conditions, which allow for continuous
variation of |p| keeping the orientation of p fixed [14]. This is useful for combining results from
different lattice spacings and gives smooth curves as a function of (ap)2 because the lattice mo-
menta all belong to the same hypercubic representation. These points have a different momenta
orientation from the others in Fig. 2 ((x,x,x,0) vs. (x,x,x,3x)) and so give some indication of the
size of hypercubic artifacts.
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Figure 1: [Note different y-axis scales left vs. right] (Left) ΛS at three valence masses and for a range
of momenta. The filled points were obtained using twisted boundary conditions. (Right) ΛP for the same
masses and momenta.
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Figure 2: Z′q extracted from the staggered polespace propagator at three masses. The filled points were
obtained using twisted boundary conditions.

2.3 RI/SMOM scheme

Due to infrared sensitivity exhibited by the MOM scheme, it may be preferable to extract
Zm using RI/SMOM intermediate schemes first formulated in [15]. SMOM schemes have several
advantages:
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• Significantly reduced infrared sensitivity.

• Reduction in mass dependence of ZS,P observed.

• Matching factors to MS scheme closer to 1.

The SMOM scheme uses a different kinematic setup than the MOM scheme. Whereas in the
MOM scheme there is a single momentum p (see Eq. (2.3)), the SMOM scheme uses separate
momenta p1, p2 on each leg with p1 − p2 inserted at the vertex. Furthermore these momenta
satisfy the constraint p2

1 = p2
2 = (p1− p2)

2 to maintain a single renormalization scale. The MOM
and SMOM setups are also referred to as “exceptional” and “non-exceptional” respectively.

Results for ΛS and ΛP obtained from the SMOM setup at a single valence mass are shown in
Fig. 3 (right). Now ΛP is much closer to ΛS over the full (ap)2 range and especially at large (ap)2

indicating effective suppression of the condensate contribution. This is shown further in Fig. 4
(left) which plots the difference between ΛP and ΛS over their average for both the exceptional and
non-exceptional schemes. Whereas the exceptional scheme shows an O(10%) difference even at
the highest momenta studied the non-exceptional difference is at most a few-percent and sub-1%
at large momentum.
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Figure 3: [Note different y-axis scales left vs. right] (Left) Comparison of ΛS and ΛP as a function of (ap)2

for amval = 0.0509 using the exceptional scheme. (Right) Same comparison but using the non-exceptional
scheme.

Fig. 4 (right) compares the mass dependence of ΛS at fixed momentum in the exceptional and
non-exceptional schemes. There is a rather strong mass dependence in the exceptional case. For the
non-exceptional scheme the variation is slight, from valence mass at the physical strange down to
ms/10. This is significant in practice because the lattice results are obtained with non-zero masses
and extrapolated to the chiral limit.

3. Conclusions

We have presented initial results for calculations of Zm using NPR techniques on n f = 2+
1+1 HISQ ensembles. We studied both exceptional (RI/MOM) and non-exceptional (RI/SMOM)
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Figure 4: (Left) Difference of ΛP and ΛS divided by their average for amval = 0.0509 using exceptional
(blue and green circles) and non-exceptional (red squares) kinematics. (Right) ΛS at fixed (ap)2 ≈ 1.2 as
a function of valence quark mass for the exceptional (green squares) and non-exceptional (blue squares)
schemes.

schemes. Results in the SMOM scheme exhibit decreased sensitivity to the infrared, and a signif-
icantly reduced dependence on valence mass is also observed, as compared to the MOM scheme.
These features, along with a MS matching factor which is close to 1, should prove useful in preci-
sion determination of Zm.

The calculations presented here have been limited to a single, coarse lattice ensemble. In the
future we will extend the work to fine (a ≈ 0.09 fm) and superfine (a ≈ 0.06 fm) lattices. It will
also be important to use ensembles with varying sea-quark masses for a given lattice spacing in
order to understand the approach to the chiral limit.
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