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cation error for the slowly convergifig = 2 OPE series. The new implementation is shown to
produce|Vys| results free of unphysicab- andw-dependences and typically 0.0020 higher
than the (unstable) results found using the conventionplementation. With preliminary new
experimental results for thi€ 1T branching fraction, the resultiny\s| is in excellent agreement
with that obtained fronK,3, and compatible within errors with expectations from thiamily
unitarity.

The 33rd International Symposium on Lattice Field Theory
14 -18 July 2015
Kobe International Conference Center, Kobe, Japan*

*Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons
Attribution-NonCommercial-NoDerivatives 4.0 Interratal License (CC BY-NC-ND 4.0). http://pos.sissa.it/



Resolving the T Vs puzzle Kim Maltman

1. Introduction

The conventionatl decay determination d¥,s| is based on finite-energy sum rules (FESRS)
involving flavor-breaking (FB) combinations of inclusivadronict decay data [1]. Wlﬂh—l\(//)A i (s)
thed = 0,1 components of the flavoj = ud, us, vector (V) or axial vector (A) current 2-point func-

tions,p\(/J/)A_ij(s) their spectral functions, antl'l; = [n\(/oﬁ;)ud — n\(/0++/i;)us], one has

% 1
/0 wW(s)Ap(s)ds = ——

27 fe w(s)AM;(s)ds, (1.1)

valid for any sy and any analytiov(s). The spectral functionAp;, of Ay, is experimentally
accessible in terms of the differential distributiatR, /;;/ds, of the normalized ratidRy /;; =
F[t~ — vrhadrong /aij (v)]/T [T~ — vee ve(y)]. Explicitly [2]

dRy /aiij 0 0

— = Y2 |we (S)A i (9) — W) (9 1.2)
with yr = s/m2, wr(y) = (1—y)2(1+ 2y), wi_(y) = 2y(1—y)?, cEW a known constant, and; the
flavorij CKM matrix elementAll; on the RHS of Eq. (1.1) is to be treated using the OPE.

The reason for employing the= 0+ 1 FESR Eq. (1.1), rather than the analogue involving the

spectral function combination in Eqg. (1.2), is the very batidvior of the integrated=0,D =2
OPE series [3].J = 0 contributions todRy /a,ug,us/ds are determined phenomenologically and

subtracted, aIIowmg)V(};lud us(S) to be obtained. The subtraction is dominated by the acdyrate

known, non-chirally-suppressed andK pole contributions. Continuum contributions p)éo/)A;ud
areJ (mq F my)? and numerically negligible, while small, but not totallygtigible, (ms= my)?2-
suppressed continuum,(;A;us contributions are fixed using highly constrained dispersind sum
rule methods [4, 5]. WithV,q| known [6], Ap;(s) is expressible in terms of experimental data and
IVus|. [Vus| is then obtained by using the OPE ffl; on the RHS and data on the LHS of Eq. (1.1).

Giventhel = 0-subtracteaﬂR\,°jj ud,us/ S itis straightforward to define re-weightdd= 0+ 1

versions oRy. audus: RV ;i (S0) = Jo° dsig; s>> dR“g;”( 9 for anywands, < m2. With SRV ONF (o)

the OPE representation 6R, A(S) = WT\’)U;‘TZSQ — R‘V’V‘*\’;UZTZ(SO) one then has
RV A (S0) OPE
Mus| = \/R¥/V+Aus J|FV3|2 - 5R\V}+A (S0)| - (1.3)

The resultingVys| should be independent of(s) andsy, provided external experimental and the-
oretical inputs, and any assumptions employed in evalgat® %" (s), are reliable. Since in-
tegratedD = 2k + 2 OPE contributions scale a$$ problems with assumptions about highier
non-perturbative contributions will show up as instalatin |Vs| as a function ofy.

The conventional implementation of Eq. (1.3) [1] emplays= w; andsy = m2. This has
the advantage that the spectral integid}s ,. 4 (M) can be determined using only the inclu-
sive non-strange and strange hadranhranching fractions, but the disadvantage that assungption
have to be made about the higher dimendios 6,8 OPE contributions in priniciple present for a
degree 3 weight likev;. The restriction to a singles and singlesy precludes subjecting these as-
sumptions tov- andsy-independence self-consistency tests. It is this conveatimplementation
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which leads to the long-standing puzzle of inclusiv®/s| determinations> 3o low relative the
3-family-unitarity expectations|\(;s| = 0.22589) for the |Vq| of Ref. [6]), the most recent such
determination|V,s| = 0.217621) [7], e.g., lying 360 low. Tests of the conventional implementa-
tion performed using variablg) and alternate weight choices [8], however, show sizegpland
w-dependence [8] (see, e.g., the left panel, and solid liméisa right panel, of Fig. 1), indicating
systematic problems with at least some aspects of the ctomahimplementation. The dashed
lines in the right panel show the results of an alternate @mgntation to be discussed below.

L= w(y) ] I — wzgy;, ng ng |
0.23 |— @ 4 — w,(y), VSA D=

[ W) 1 — Wj(y), VSA D=6 -
- Wy(y), fﬁtted G
- wy(y), f!tted G
--w,(y), fitted C,

0.225\

0.228
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S 7 ——
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Figure 1. Left panel:|Vys| obtained from thev; andw FESRs using the conventional implementation [1]
OPE treatment, including use of the CIPT prescription ferh= 2 series. Right panel: Comparison of the
conventional implementation results fiM;s| from thew, 3 4 FESRs with those obtained using the central
fitted values ofCg g 10, Now using the FOPD = 2 prescription favored by lattice results.

Two obvious potential sources exist for these instabdlitidhe first lies in the treatment of
D = 6, 8 OPE contributions. In both the conventional implemeotaand generalized versions
just mentioned [8]D = 6 contributions are estimated using the vacuum saturapproaimation
(VSA), andD = 8 contributions neglected. The resultibg= 6 estimate is very small due to signif-
icant cancellations, first in the individuatl andus V+A sums and, second, in the FB difference of
these sums. Such strong cancellations make use of the V8#asstpotentially dangerous, given
the sizeable, channel-dependent VSA breaking observdukifidvorud V and A channels [9].
The second possibility concerns the slow convergence,eatdirelator level, of th® = 2 OPE
series. Witha= as(Q?)/m, andas(Q?), ms(Q?) the running coupling and strange quark mass in
theMSscheme, one has, to four loops [10] (neglec@(grﬁ‘d/nﬁ) corrections)

3 2 7_ » »
(@)% = 2 M@y L T 19032 4 208758 1 | (L)

2@ Q2 3

With a(m?2) ~ 0.1, convergence at the spacelike point on the confglur s, is marginal at best.
This raises the question of truncation order and truncatioar estimates for the corresponding
integrated series. TH2 = 2 convergence issue also shows up in the significant diféeréncreas-
ing from ~ 0.0010 to~ 0.0020 between 3- and 5-loop truncation order)\i| results obtained
using alternate (fixed-order (FOPT) and contour-improvelP()) prescriptions for the truncated
integratedD = 2 series which differ only by terms beyond the common trunoatrder [8].
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In what follows, we first investigate the treatment of the= 2 OPE series using lattice data
for All, then test theD = 6, 8 assumptions of the conventional implementation by comgar
FESR results for a judiciously chosen pair of weights(y) andwi(y) = (1—-v)3, y = s/s. We
then present results obtained employing an alternate imgoi¢ation of the FB FESR approach
suggested by these investigations.

2. Lattice and continuum investigations of the OPE representation of Al

Data forAM;(Q?) over a wide range of Euclidea®’ can be generated using the lattice, with
an appropriate cylinder cut applied to avoid lattice actifaat highQ?. This issue has been studied
in detail for the ensemble employed here in a recent andlysised on determinings from lattice
current-current two-point function data [11]. Here we fiensider data af? high enough that
[AM¢] 5pe Will be safely dominated by its leading = 2 and 4 contributionsD = 4 contributions
are determined by light and strange quark masses and catderand hence known. We take
FLAG results for the physical quark masses [12], the lightdemsate from GMOR, and the strange
condensate frongss)/(uu). The latter is determined using the HPQCD physivglversion of this
ratio [13], translated to the, of the ensemble employed using NLO ChPT [14]. We then conside
various combinations of truncation order and schemes sumening logs for th® = 2 OPE series,
investigating whether any of these choices produce a goachnb&tween the resulting =2+ 4
OPE sum and lattice data in the higH-region.

oooiz ' T 00012 ' e
s = Lattice data , . Cattltcel 3a}a D=2 + D=4 ORE

\ -— 2-loop D=2 truncation -- Lentra _'OOP = + D=
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Figure 2: Left panel: comparison of lattice data and OPE= 2+ 4 expectations for the various truncation

orders and the fixed-scale treatment of Ehe- 2 series. Right panel: lattice data and the- 2+ 4 OPE
sum, with conventional OPE error estimates, for the 3-ltapcated, fixed-scalb = 2 treatment

8 10

For this high©? study, we employ the RBC/UKQCB; =2+ 1, 32 x 64, 1/a= 2.38 GeV,
m;; ~ 300 MeV domain wall fermion ensemble [15]. We find (see thé peinel of Fig. 2) that
3-loop D = 2 truncation with fixed-scale (the analogue of the FOPT FE&Rquiption) provides
an excellent OPE-lattice match over a wide rang®afextending from~ 10 Ge\? down to~ 4
Ge\2. The fixed-scale choice is, moreover, superior to the alterfocal-scaley(? = Q?) choice
(analogous to the CIPT FESR prescription). The right pahé&lig.2 shows theD = 2+ 4 OPE
error band obtained using the 3-loop-truncated, fixededgat 2 OPE treatment and conventional
OPE error estimate methods. The resulting, nominally retik@ turns out to be, in fact, extremely
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conservative, despite the very slow convergence obthe2 series. Clear evidence (to be detailed
elsewhere) also exists for the onset, be@iw 4 Ge\2, of significantly largeD > 4 contributions
than expected based on the VEA= 6 condensate employed in the conventional implementation.
With no means of selectively isolating contributions ofeliéntD > 4 in the Euclidean lattice data,
further investigation of the highd) question requires continuum FESR methods.

For our continuum FESR studies, we employ he- 2 and 4 OPE treatment favored by lat-
tice data, detailed above. As input on the spectral intesidals, we employr,», K,;» and Standard
Model expectations for the andK pole contributions, recent ALEPH data for the continuuen
V+A distribution [16], BaBar [17] and Belle [18] results fdhe K~ 7° and K°rr— distributions,
BaBar results [19] for th& " 71— distribution, Belle results [20] for this®rr~ ° distribution and
1999 ALEPH results [21] for the “residual” distribution imlving strange modes not remeasured
by the B-factory experiments. The unit-normalized BaBat Belle exclusive mode distributions
must be normalized using experimental branching fractiomthe results quoted below we employ
HFAG strange exclusive mode branching fractions, with tteeption ofk ~m°, for which we em-
ploy the update contained in the recent BaBar Adametz tifig8]sperforming an accompanying
very small rescaling of the continuund V+A distribution to restore unitarity.

Neglectingas-suppressed logarithmic corrections, he> 4 OPE contributions téM;(Q?)
can be writtery 5. 4Cp/QP with Cp effective condensates of dimensibn The degree 3 weights
wr(y) = 1—3y? +2y® andw(y) = 1— 3y + 3y?> — y® generate integrated OPE contributions up to
D = 8. The associateD > 4 contributions,

s 2 3Cs  Cg

ERE] ERE
differ in sign, with the twaD = 6 contributions identical in magnitude and the magnitudthef’
D = 8 contribution half that ofv;. It follows that, if the assumptions of the conventional leip
mentation are correct aridl = 6, 8 contributions are basically negligible in thg FESR, this will
necessarily also be the case for M€ESR. ThdV,s| results obtained from the two FESRs should
then agree and, moreover, §eindependent. In contrast, if the = 6 and/or 8 contributions to the
w; FESR are not, in fact, negligible, one should sgéstabilities of opposite sign, decreasing in
magnitude with increasing, for the results ofV,s| obtained from the two FESRs. The left panel
of Fig. 1 shows that it is the latter scenario which is realiz€he sizeabley- and weight-choice
dependences demonstrate unambiguously that the assomptiderlying the conventional imple-
mentation are untenable, and that the 18w |V,s| results obtained employing them are afflicted
with significant previously unquantified systematic unaieties.

for w; and for w, (2.1)

3. An alternate implementation of the FB FESR approach

With previously employed methods for estimatiBDg> 4 effective OPE condensates shown
to be unreliable, one has no option but to fit these condensatedata. This requires working
with FESRs involving variablgy and hence precludes determining the required spectragraise
solely in terms of inclusive hadronic branching fractioff®@ suppress possible duality violating
contributions, we restrict our attention to FESRs with vaésghaving at least a double zero at
s= 5. The weightamy(y) = 1— sy + x5y, N > 2 [23] are particularly convenient since they



Resolving the T Vs puzzle Kim Maltman

yield a singleD > 4 OPE contribution (wittD = 2N + 2). With D = 2+ 4 OPE contributions
under control, as discussed above, this ledVigs andCyy.2 as the only parameters to be fit to
the wy-weighted, sp-dependent spectral integrals. Further tests of the apadye provided by
checking that (i) theéV,s| obtained from the differentyy FESRs are in agreement and (ii) the fitted
Cp are physically sensible (i.e., show FB cancellation re¢atb the results of Ref. [9] for the
corresponding flavand condensates). We have analyzedwhe=ESRs folN = 2, 3,4 and verified
that the results pass these self-consistency tests. ligthtepanel of Fig. 1 we display the results
obtained by taking the central values for thg Cg andC,g obtained in this analysis as input and
solving Eq. (1.3) for}Vys|, as a function ofy, for each of thew,, ws andw, FESRs. The figure
illustrates (i) the underlying excellent match betweenfitted OPE and spectral integral sets, (ii)
the excellent agreement between the results of the ditféfESR analyses and (iii) the dramatic
decrease ir%- and weight-dependence produced by uding 4 OPE contributions fit to data in
place of those based on the assumptions of the conventiopéémentation. In addition, one sees
that, as expected, the fittéd,s| lie between thes-unstable results produced by the conventional
implementation of thev; andw FESRS, and are 0.0020 higher than the results of the conventional
w; implementation.

With the results from the differemty FESRs showing good compatibility asgtstability, our
final result for|Vs| is obtained by performing a combined fit to thg, ws andw, FESRs. We findl

Vus| = 0.222823)exp (5)th (3.1)

in excellent agreement with the results2PB54) e (9)th and 02231(4)exp (7)th, Obtained using
the 2014 FlaviaNet experiment#l;3 update [25] and most recem = 2+ 1 [26] andns =
2+ 1+ 1 [27] lattice results forf, (0). It is also compatible within errors with (i) the results,
0.2251(3)exp (9)th and 002250 3) exp (7)th Obtained using the 2014 experimerftak o] /I [11,2] up-
date [25] and most recent = 2+ 1 [28] andns = 2+ 1+ 1 [29] lattice determinations df / f,;
and (ii) the expectations of 3-family unitarity. It is worttoting that, among these methods, the
one having the smallest theory error is the FB FESR detetiomawhich error, as we have seen,
is very conservative. At present the experimental errorhenRB FESR determination (resulting
almost entirely from uncertainties in this exclusive mode distributions) is larger than those of
the competing methods, but this error is currently domihde the uncertainty on the branching
fraction normalizations for the exclusive strange moded,systematically improvable in the near
future.
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