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We present a lattice QCD determination of the vector and scalar form factors of the semileptonic
decays D→ π`ν and D→ K`ν which are relevant for the extraction of the CKM matrix ele-
ments |Vcd | and |Vcs| from experimental data. Our analysis is based on the gauge configurations
produced by the European Twisted Mass Collaboration with N f = 2+1+1 dynamical fermions.
We simulated at three different values of the lattice spacing and with pion masses as small as
210 MeV. Our preliminary estimates for the vector form factor at zero 4-momentum transfer are
f (D→π)
+ (0) = 0.610(23) and f (D→K)

+ (0) = 0.747(22), where the uncertainties are only statistical.
By combining our results with the experimental values of f (D→π)

+ (0)|Vcd | and f (D→K)
+ (0)|Vcs| we

obtain |Vcd | = 0.2336(93) and |Vcs| = 0.975(30), which together with the PDG determination of
|Vcb| are in agreement with the unitarity constraint of the Standard Model.
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1. Introduction and simulation details

In the Standard Model (SM) weak charged flavor changing currents are regulated by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2]. Therefore, a precise knowledge of its ele-
ments allows us to test the SM and possibly to search for New Physics.

In this contribution we present the preliminary results of our analysis of the vector and scalar
form factors of the D→ π`ν and D→ K`ν decays, which are relevant for the determination of the
CKM matrix elements |Vcd | and |Vcs|.

We use the ensembles of gauge configurations generated by the European Twisted Mass Col-
laboration (ETMC) with N f = 2+ 1+ 1 dynamical quarks, which include in the sea, besides two
light mass-degenerate quarks, also the strange and the charm quarks. The gauge ensembles and the
simulations are the same adopted in Ref. [3] to determine the up, down, strange and charm quark
masses, as well as in Ref. [4] to determine the leptonic decay constants fK/ fπ , fD and fDs . We
consider three different values of the lattice spacing, the smallest being approximately 0.06 fm, in
order to control properly the continuum extrapolation, and pion masses as low as 210 MeV.

The gauge sector has been simulated using the Iwasaki gluonic action [5], while sea quarks
are implemented with the Wilson Twisted Mass Action [6], which at maximal twist allows for
an automatic O(a)-improvement [7]. Valence quarks are simulated using the Osterwalder-Seiler
action [8]. More details about the lattice ensembles and the simulation details can be found in
Ref. [3]. In order to inject momenta we implement non-periodic boundary conditions for the quark
fields [9, 10, 11], obtaining in this way quark momenta ranging from ' 150 to ' 650 MeV. This
allowed us to cover the region of values of the squared 4-momentum transfer q2 from q2 = 0 to
q2

max = (MD−Mπ(K))
2.

We have calculated the three-point correlation functions for the two pseudoscalar mesons in-
volved in the decays connected by the weak vector current in order to extract the corresponding
vector current matrix elements. From the latter we construct the form factors f+(q2) and f0(q2),
which are then interpolated to the physical strange and charm quark masses, ms and mc, determined
in Ref. [3], using a simple quadratic spline. We perform a multi-combined fit of the lattice data by
analysing simultaneously the dependencies of f+(q2) and f0(q2) on the (renormalized) light-quark
mass ml , the squared lattice spacing a2 and the squared 4-momentum transfer q2.

Our preliminary results at q2 = 0 are f (D→π)
+ (0) = 0.610(23) and f (D→K)

+ (0) = 0.747(22),
where the uncertainties are only statistical. By combining our results with the experimental values
of f (D→π)

+ (0)|Vcd | and f (D→K)
+ (0)|Vcs| from Ref. [12] we obtain |Vcd | = 0.2336(93) and |Vcs| =

0.975(30), which together with the value |Vcb|= 0.0413(49) from the PDG [13], are in agreement
with the unitarity constraint of the SM.

2. Extraction of the vector and scalar form factors of the D-meson semileptonic
decays

In this section we present the extraction of the vector and scalar form factors describing the
semileptonic decays of the D-meson from our lattice simulations. We started by calculating the
three-point correlation functions connecting the initial D-meson and the final pseudoscalar one (a
pion or a kaon) through a (bare) local vector current Vµ , employing Gaussian smearing for the
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meson interpolating fields at the source and the sink. At large time distances one has

CDM
µ (t,Tsep,~p,~p′)

t�a , (Tsep−t)�a
−−−−−−−−−−→

√
ZD(~p)ZM(~p′)

4EDEM

〈
M(p′)

∣∣Vµ

∣∣D(p)
〉

e−EDt−EM(Tsep−t) , (2.1)

where Tsep is the time distance between the source and the sink, M represents either a π or a
K meson,

〈
M(p′)

∣∣Vµ

∣∣D(p)
〉

is the (bare) vector current matrix element, ED(M) is the energy of
the D(M)-meson and ZD(M)(~p) is the coupling of the smeared interpolating field with the D(M)-
meson. The latter can be determined by analysing the large time distance behaviour of the two-point
correlation functions, namely

CD(M)
2 (t,~p(~p′)) t�a−−→

ZD(M)(~p(~p′))
2ED(M)

[
e−ED(M)t + e−ED(M)(T−t)

]
. (2.2)

The matrix elements of the renormalized vector curent V̂µ are then given by [7]〈
V̂µ

〉
≡
〈
M(p′)

∣∣V̂µ

∣∣D(p)
〉
= ZV

〈
M(p′)

∣∣Vµ

∣∣D(p)
〉
, (2.3)

where ZV is the renormalization constant of the vector current, determined very precisely by ETMC
through the Ward-Takahashi identity in Ref. [3]. From the matrix elements

〈
V̂µ

〉
we compute the

vector and the scalar form factors according to the following relations:

f+(q2) =
(ED−EK(π))〈Vi〉− (pi− p′i)〈V0〉

2ED p′i−2EK(π)pi
, (2.4)

f−(q2) =
(pi + p′i)〈V0〉− (ED +EK(π))〈Vi〉

2ED p′i−2EK(π)pi
, (2.5)

f0(q2) = f+(q2)+
q2

M2
D−M2

K(π)

f−(q2) (2.6)

At fixed values of the quark masses and of the lattice spacing the q2-dependence of the form
factors exhibit the behavior shown in Fig. 1. Besides the dependence on the Lorentz-invariant
quantity q2 there is a clear dependence upon the value of the light-meson momentum. Such an
effect turns out to be more relevant in the case of the D→ π form factors with respect to the case
of the D→ K ones.

The behavior shown in Fig. 1 is clearly due to the breaking of Lorentz invariance and the
discretization effects responsible for that are expected to depend on hypercubic invariants and to
be O(a)-improved. In terms of the quantities q2

E ≡∑
4
i=1 q2

i and q̃4
E = ∑

4
i=1 q4

i a possible hypercubic
invariant of order O(a2) is a4q̃4

E/a2q2
E . After looking at the dependence of the lattice data on

a4q̃4
E/a2q2

E we have applied a cut by selecting only those data that satisfy the condition q̃4
E/q2

E <

2.5GeV2. The effect of this cut is shown in Fig. 2, where the full red dots represent the data
passing the cut condition. It is clear that after the cut the lattice data appear to depend smoothly on
the Lorentz-invariant quantity q2.

3. Combined chiral and continuum extrapolations

We now perform a global fit of the lattice data of the vector and scalar form factors by analysing
simultaneously their dependencies on m`, a2 and q2. We adopt a simple polar expression with
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Figure 1: Momentum dependence of the vector form factor f+(q2) for the D→ π`ν decay. The data
corresponds to the ensemble A30.32 (see Ref. [3]) with aµ` = 0.0030 and aµc = 0.21256. Different values
of the pion momentum are shown by different markers and colors.
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Figure 2: Momentum dependence of the vector form factor f+(q2) for the D→ π`ν decay corresponding
to the ensemble A60.24 (see Ref. [3]). The lattice data are interpolated to the physical charm quark mass
determined in Ref. [3]. Hollow points represent the data excluded by the cut on the hypercubic invariant
q̃4

E/q2
E (see text).
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polynomial corrections in m`, a2 and q2, viz.

f+(q2) =
F+

1−q2/M2
V
(1+Aq2)(1+P1m`+P2a2) , (3.1)

f0(q2) =
F+

1−q2/M2
S
(1+Bq2)(1+P1m`+P2a2) , (3.2)

where F+, A, B, P1 and P2 are free parameters and MV (MS) is the mass of the low-lying vector
(scalar) resonance, i.e. the D∗(2010) and D∗0(2400) resonances, respectively. The values of MV

and MS are estimated as MV (S) = MD +∆V (S), where MD is the D-meson mass calculated on the
lattice for each gauge ensemble, while ∆V (S) is the difference between the experimental value of
the low-lying vector (scalar) resonance mass and the isospin symmetric D-meson mass, taken from
the PDG [13].

The comparison between the lattice data and the results of the fitting functions (3.1) obtained
in the case of both D→ π`ν and D→K`ν is reported in Fig. 3 in the case of the ETMC ensembles
A60.24 and D20.48 (see Ref. [3]).
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Figure 3: Data points of f+(q2) and f0(q2) for the D→ π`ν decay (left panel) and for the D→ K`ν decay
(right panel) corresponding to the gauge ensembles A60.24 and D20.48 (see Ref. [3]). The solid curves
represent the results of the fit (3.1) together with the uncertainties indicated by the slashes.

In Fig. 4 our results for the form factors extrapolated to the physical point are compared with
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the experimental data for the vector form factor f+(q2) obtained by the Belle [14], Babar [15, 16]
and Cleo [17, 18] experiments. It can clearly be seen that the agreement is good.

0,5 1 1,5 2 2,5 3

q
2
 (GeV

2
)

1

1,5

2

2,5

3
f
0
(q

2
)

f
+
(q

2
)

Cleo D+
Cleo D0
Belle
BaBar

0,5 1 1,5 2

q
2
 (GeV

2
)

0,5

1

1,5

2

2,5

f
0
(q

2
)

f
+
(q

2
)

Cleo D+
Cleo D0
Belle
BaBar

Figure 4: Results for the vector and scalar form factors of the D→ π`ν (left panel) and D→ K`ν decays
extrapolated to the physical point as functions of q2. The results of the Belle [14], Babar [16, 15] and Cleo
[17, 18] experiments for the vector form factor f+(q2) are reported for comparison.

Our preliminary estimates for the vector form factor at zero 4-momentum transfer are

f (D→π)
+ (0) = 0.610 (23) , (3.3)

f (D→K)
+ (0) = 0.747 (22) , (3.4)

where the uncertainties are only statistical. Our results can be compared with the FLAG averages
f (D→π)
+ (0) = 0.666(29) and f (D→K)

+ (0) = 0.747(19) [19], based on the lattice results obtained at
N f = 2+1 in Refs. [20] and [21], respectively.

4. Calculation of |Vcd| and |Vcs|

The results (3.3) for the form factor at zero 4-momentum transfer can be combined with the
updated experimental averages f (D→π)

+ (0)|Vcd |= 0.1425(19) and f (D→K)
+ (0)|Vcs|= 0.728(5) from

Ref. [12] to get

|Vcd | = 0.2336 (31)exp (88) f+(0) = 0.2336 (93) , (4.1)

|Vcs| = 0.975 (7)exp (29) f+(0) = 0.975 (30) . (4.2)

These results, together with the latest determination of |Vcb|= 0.0413(49) from the PDG [13], can
be used to perform the unitarity test of the second row of the CKM matrix, obtaining

|Vcd |2 + |Vcs|2 + |Vcb|2 = 1.007 (63) , (4.3)

which agrees with the SM constraint at the level of ' 6%.
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