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When several four-quark operators are allowed to mix through renormalisation, this can consid-
erably amplify the problems coming from perturbative truncation and discretisation effects. In
this work we investigate whether our previous BK strategy can conveniently be generalised to
a wider set of operators, corresponding to the so-called “SUSY BK” basis of four-quark opera-
tors. We show that the discretisation effects, when plotted as a function of ap, are surprisingly
independent of the lattice spacing. They appear reasonably under control up to very large en-
ergy scales. This allows us to discuss the effect of varying the intermediate scale on which the
perturbative matching is done, and therefore the prospects of future high-precision studies with a
Rome-Southampton renormalisation.
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1. Introduction

In a previous work[1] we have set a new strategy to improve the non-perturbative renormal-
isation (NPR) of the Kaon-Bag parameter BK , a four-quark operator describing the neutral kaon
oscillation. It included several new Nf = 2+1+1 and Nf = 2+2 ensembles with fine lattice spac-
ing, in order to access high energy scale for the RI/SMOM schemes. Here we present a direct
generalisation of this work to a basis of 5 operators with mixing, those operators differing from the
former one by their Dirac structure:

Q1 = Q(27,1) = (s̄γµd)(s̄γµd)+(s̄γµγ5d)(s̄γµγ5d) (1.1)

Q2 = Q(8,8)1 = (s̄γµd)(s̄γµd)− (s̄γµγ5d)(s̄γµγ5d) (1.2)

Q3 = Q(8,8)2 = (s̄d)(s̄d)− (s̄γ5d)(s̄γ5d) (1.3)

Q4 = Q(6,6)1 = (s̄γµd)(s̄γµd)+(s̄γµγ5d)(s̄γµγ5d) (1.4)

Q5 = Q(6,6)2 = (s̄σµνd)(s̄σµνd)+(s̄σµνγ5d)(s̄σµνγ5d). (1.5)

Those operators allow for computations of the neutral kaon oscillation beyond the Standard
Model (with anything other than a V −A interaction), so that it is typically called “SUSY basis”
[2, 3]. But it also describes problems such as the K → ππ ∆I = 3/2 decay. What it does not
describe are things such as the (8,1) sector of the K → ππ ∆I = 1/2 decay, which is outside the
scope of this work because of its very noisy disconnected diagrams.

Compared to the BK study, this one will mainly consist in promoting most numbers to ma-
trices. One major difference, though, is that we are only going to provide results from a single
scheme (RI/SMOM

γµ
), whereas the main result of the BK study was the better agreement of the

RI/SMOM
/q scheme with perturbative running for that sector. Indeed, we are still assessing which

definition of a SUSY RI/SMOM
/q scheme would be the best.

In a first section I will first give some update about the generation of our ensembles and their
scale setting, where some important efforts have been made. Then a second section will be dedi-
cated to the fit model. And the last section will give both fit-independent and fit-dependent results.

2. Ensembles and Scale-setting

The difficulty of generating fine ensembles has been widely experienced in the community.
Although the NPR is a very robust quantity which is ideal for the first steps in the Nf = 2 + 1 + 1
world, we are hit by the problem of scale-setting. Indeed, a low-energy observable such as the
Wilson flow is much more subject to long autocorrelations. Then, while a very limited number of
configurations was enough to get small errors for the NPR Green functions, we felt necessary to
generate many more configurations to make sure our Wilson flow was thermalised and ergodically
sampled (see Figs. 1-2).

Using the ensembles in Tab. 1 we concluded that the quark mass dependence (for both light
and charm) is very small, and chose to neglect it in the present preliminary results, so that we only
consider the Nf = 2+2 part of our step-scaling strategy[1].
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ht

β L3×T ×L5 ml ms mc a−1

5.70 323×64×12 0.0047 0.0186 0.243, 0.1, 0.0186 3.0 GeV
5.70 323×64×12 0.002 0.0186 0.243 3.0 GeV
5.77 323×64×12 0.0044 0.0166 0.213 3.6 GeV
5.84 323×64×12 0.0041 0.0146 0.183, 0.0146 4.3 GeV
5.84 323×64×12 0.002 0.0146 0.183 4.3 GeV

Table 1: Fine Nf = 2+1+1 ensembles at our disposal. We highlight in boldface the ones actually
used in this work. Those mass combinations have degenerate “charm” and “strange”, so we call
them Nf = 2+2 simulations.
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Figure 1: Wilson flow evolution for the two main ensembles. The vertical line shows where we
start fitting, and the horizontal band shows the fit result. The x-axis shows the trajectory number.
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Figure 2: Topological charge for the two main ensembles, as an illustration of the progressive loss
of tunnelling when we go beyond a−1 = 4 GeV.

3. Fit Models

In a perturbative formulation, any lattice quantity naturally appears as

F(p,a) = ∑
n

gn(a)Fn(ap). (3.1)

As explained in [1], one can therefore expect that at high-p the most dramatic discretisation terms
come as polynomials in ap, while the physical scale only appears in logarithms. When p is large but
ap moderately small, one can design a double expansion and select a finite number of fit parameters.
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In our case, we found appropriate to describe discretisation effects by simply a term in (ap)2 and
a term in (ap)4 (where the prefactors are matrices). In terms of the Green functions Λ = Z−1 the
fitting formula is

Λ(a1, p1)−1
Λ(a2, p2) =

(
1+A1(a1 p1)2 +B1(a1 p1)4)−1

L−1
1 L2

(
1+A2(a2 p2)2 +B2(a2 p2)4) ,

(3.2)
for all momenta such that p2

1 = p2
2. The Ai, Bi and Li matrices are fit parameters. The indices

run on any combination of ensemble and momentum orientation, so that for 2 ensembles and 2
orientations we have 4 ratios for each considered p2, each ratio being a 5×5 matrix. However, A
and B only depend on the orientation while L only depends on the ensemble.

While each Λ is p dependent, those ratios are supposed to be p-independent (or even 1 if the
ensembles are the same), up to discretisation terms. All those ratios are therefore a rich signal of
discretisation effects, signal which is already visible before any fit is performed.

All-order perturbation theory gives a physical interpretation of why the fit works. However,
an important property of our fitting formula is that it does not depend on the prior knowledge of
perturbation theory at any given order. So the method is still purely non-perturbative. It is indeed
much safer to study the convergence of perturbation theory independently from the continuum
extrapolation.

4. Results

On top of the various interesting ratios, we will present the results in terms of the previously
studied step-scaling function[5]. We also define RGI quantities:

ZRGI = CT ZRI/SMOM (4.1)

and the (reduced) bilateral RGI step-scaling

σRGI(p, p0) = CT (p)σRI/SMOM(p, p0)CT−1(p0) and σ
′
s(p, p0) = σs(p, p0)− Id, (4.2)

where (using notations from [4])

C =
(

1+
α

4π
J
)

α
γ0/2β0 . (4.3)

Because we do not want to depend on the fit as a black box, we start by looking at the O(4)-
breaking part of the discretisation errors (Fig. 3), which can be studied separately for every ensem-
ble. The fact the β dependence is hardly visible is already a strong argument in favour of our fit
model, showing the weak influence of logarithic terms in Eq. (3.1). Then we can look at the full
set of ratios in the new (8,8) and (6,6) sectors, compared with the result of the fit (Fig. 4). Finally
in Figs. 5-6 we use our model to correct the data.

Without the comparison with a second scheme, we do not really know which p2 is a good
compromise between small discretisation errors and small truncation errors. While we might want
to push harder in the future, we choose to stay on the safe side and give a preliminary result at
5 GeV (central value is taken from the corrected data of the finest ensemble, while the second
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number in parenthesis is an estimate of the systematic error given by the full difference between
the fine ensemble and the coarse ensemble):

σRI/SMOM(3 GeV,5 GeV)=


1.0248(5)(7) 0 0 0 0

0 1.0239(5)(5) 0.168(3)(2) 0 0
0 0.0064(4)(2) 0.764(4)(5) 0 0
0 0 0 0.838(3)(4) 0.0002(4)(6)
0 0 0 -0.138(2)(5) 1.142(1)(1)

 .

Please do not forget that some systematics have been neglected, mainly the mass dependences, and
they are expected to lie at the per mile level, based on past evidence with non-exceptional schemes.
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Figure 3: Subset of our ratios, where numerator and denominator use the same ensemble. We
have only selected p2 for which we have data for both directions at exactly the same p2 without
any interpolation, so that this signal is very reliable. We see that those quantities are surprisingly
independent of β (different curves of the same colour), even though we do see some discrepancy
at our tiny statistical level for 4 of the 5 diagonal elements.

5. Conclusion

We have shown that there is a strong relation between the p-dependence and the a-dependence
of RI/SMOM renormalisation factors, and that we are able to exploit it, even in cases with impor-
tant operator-mixing. While the discretisation effects can be large, this technique allows to keep
them under control up to very high scales, in that a parametric form describes the data well and can
be subtracted, without compromising the renormalisation’s non-perturbative character.

However, despite very encouraging results, we still have not reached a scale at which pertur-
bation theory fully agrees with the non-perturbative results. For several matrix elements it is even
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Figure 4: Pushing to a larger (ap)2 cut-off than the one chosen in the final analysis, one can clearly
see the curvature from (ap)4 terms. Moreover, most of the data is still in striking agreement with
the fit.

hard to tell whether we are really getting closer to a plateau or not. Comparing these results with a
RI/SMOM

/q scheme, as we did for BK , would certainly illuminate our interpretation, since the RGI
result should be independent of intermediate scales and schemes if perturbation theory is accurate.
It is an objective for the near future.

On a longer term we would certainly like to generate a new Nf = 2 + 2 ensemble at an inter-
mediate lattice spacing, and more configurations for some of the ensembles we have not used here.
But a reliable tunnelling is expensive, so a full treatment of every systematic is unlikely to enter the
scope of this exploratory project before a massive algorithmic advance appears.
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Figure 5: The reduced bilateral RGI step-function would have all its elements to zero if perturbation
theory were perfect. We plot for each ensemble and orientation both the raw data σ ′lat and the
corrected data σ ′cont whose main part of the discretisation effects is removed thanks to the results
of the global fit. For (27,1) we seem to be approaching a plateau, and could gain up to 2% in
truncation error. But having RI/SMOM

/q was decisive to bring a solid conclusion in [1], because

they both agreed well at large p2.
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Figure 6: Reduced bilateral RGI step function in the BSM sectors. Thanks to the subtraction of
discretisation effects, the main contributions come closer to a plateau. This scale dependence is
certainly indicative of large perturbative truncation error in SUSY BK operators renormalised at
3 GeV in the RI/SMOM

γµ
scheme. Here increasing the scale has a much more dramatic effect

than in the BK sector, up to ∼ 20%.

7


