
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
2
6
4

Determining the scale in Lattice QCD

V. G. Bornyakov a, R. Horsley ∗b, R. Hudspith c, Y. Nakamura d, H. Perlt e, D. Pleiter f ,
P. E. L. Rakow g, G. Schierholz h, A. Schiller e, H. Stüben i and J. M. Zanotti j

a Institute for High Energy Physics, Protvino, 142281 Protvino, Russia,
Institute of Theoretical and Experimental Physics, Moscow, 117259 Moscow, Russia,
School of Biomedicine, Far Eastern Federal University, 690950 Vladivostok, Russia

b School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK
c Department of Physics and Astronomy, York University, Toronto, ON Canada M3J 1P3
d RIKEN Advanced Institute for Computational Science, Kobe,Hyogo 650-0047, Japan
e Institut für Theoretische Physik, Universität Leipzig, 04109 Leipzig, Germany
f JSC, Forschungszentrum Jülich, 52425 Jülich, Germany

Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
g Theoretical Physics Division, Department of MathematicalSciences, University of Liverpool,

Liverpool L69 3BX, UK
h Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
i Universität Hamburg, Regionales Rechenzentrum, 20146 Hamburg, Germany
j CSSM, Department of Physics, University of Adelaide, Adelaide SA 5005, Australia
E-mail: rhorsley@ph.ed.ac.uk

QCDSF-UKQCD Collaborations

We discuss scale setting in the context of 2+1 dynamical fermion simulations where we approach

the physical point in the quark mass plane keeping the average quark mass constant. We have

simulations at four beta values, and after determining the paths and lattice spacings, we give an

estimation of the phenomenological values of various Wilson flow scales.
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Wilson flow scales R. Horsley

1. Singlet quantities

Numerical lattice QCD simulations determine mass (or other) ratios but not the scale itself,
which has to be determined from experiment. A hadron mass such as the proton mass or decay
constant such as the pion decay constant are often used for this purpose. We discuss here the ad-
vantages of setting the scale using a flavour-singlet quantity, which in conjunction with simulations
keeping the average quark mass constant allowSU(3) flavour breaking expansions to be used. This
is illustrated using 2+1 flavour clover fermions, and in addition a determination of the Wilson flow

scales,
√

texp
0 andwexp

0 is given.
This talk is based on [1], where further details can be found.
Dynamical simulations start with some values of the quark masses and then extrapolate along

some path in(u,d,s) space1 to the physical point. The strategy we have adopted here, [2, 3] is to
start at a point on theSU(3) flavour symmetric line, when all the quark masses are equal

(m0,m0,m0)→ (m∗
u,m

∗
d,m

∗
s) , (1.1)

and to keep the singlet quark massmconstant

m=
1
3
(mu+md +ms) = const.≡ m0 . (1.2)

This allows anSU(3)F flavour symmetry breaking expansion for masses and matrix elements. The
expansion parameter is naturally the distance from theSU(3) flavour plane, parametrised by

δmq = mq−m. (1.3)

This has the trivial constraint

δmu+δmd +δms = 0. (1.4)

The expansion coefficients are functions ofm only so providedm is kept constant they remain
unaltered whether we have mass degenerateu andd quarks or not. This opens the possibility of
determining isospin breaking quantities from just 2+1 simulations. The plane (or path) is called
‘unitary’ if we expand in both the same sea and valence quarks masses.

Consider now a flavour singlet quantityXS(mu,md,ms) which by definition is invariant under
u, d, s permutations. This has a stationary point about theSU(3) flavour symmetric line. For upon
expanding a flavour singlet quantity about a point on theSU(3)-flavour line we have

XS(m+δmu,m+δmd,m+δms)

= XS(m,m,m)+
∂XS

∂mu

∣

∣

∣

∣

0
δmu+

∂XS

∂md

∣

∣

∣

∣

0
δmd +

∂XS

∂ms

∣

∣

∣

∣

0
δms+O((δmq)

2) . (1.5)

However on this line all the above derivatives are equal and thus we have

XS(m+δmu,m+δmd,m+δms) = XS(m,m,m)+O((δmq)
2) . (1.6)

1Practically we consider mass degenerateu andd quarks, whenmu = md ≡ ml but the discussion here is more
general.
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There are many possibilities for singlet quantities. Using hadronic masses wehave, for example

X2
N = 1

6(M
2
p+M2

n +M2
Σ+ +M2

Σ− +M2
Ξ0 +M2

Ξ−) = (1.1610GeV)2

X2
π = 1

6(M
2
K+ +M2

K0 +M2
π+ +M2

π− +M2
K

0 +M2
K−) = (0.4116GeV)2

X2
ρ = 1

6(M
2
K∗+ +M2

K∗0 +M2
ρ+ +M2

ρ− +M2
K
∗0 +M2

K∗−) = (0.8562GeV)2 , (1.7)

for octet baryons, pseudoscalar octet mesons and vector octet mesons respectively. Another baryon
octet possibilty isX2

Λ = 1
2(M

2
Σ+M2

Λ) but other singlet quantities can be constructed using the baryon
decuplet. Alternatively gluonic quantities can be used such as the ‘Force’scaleX2

r0
= 1/r2

0 or the
Wilson flow scales, introduced by Lüscher

X2
t0 =

1
t0
, X2

w0
=

1

w2
0

, (1.8)

(see e.g. [4, 5]). These are all ‘secondary scales’, their physicalvalue has to be determined.
The stationary point ofXS can be checked, using the Gell-Mann–OkuboSU(3) flavour break-

ing expansion. For example for the pseudoscalar octet mesons we have the expansion

M2
π+(= M2

π−) = M2
0π +απ(δmu+δmd)+O((δmq)

2)

M2
K+(= M2

K−) = M2
0π +απ(δmu+δms)+O((δmq)

2)

M2
K0(= M2

K
0) = M2

0π +απ(δmd +δms)+O((δmq)
2) . (1.9)

ConstructingX2
π gives immediately the result of eq. (1.5). Another check is to useχ-PT (assuming

that it is valid in the neighbourhood of theSU(3) flavour plane/line). Simply choose your favourite
χ-PT result and expand about aSU(3) flavour symmetric line/point. For example in [6], the chiral
expansion fort0 (for mass degenerateu andd quarks) can be manipulated [1] to give

t0 = T(χ)
[

1+
1

(4π f0)4(
5
6k2+

1
4k′′5)(χs−χl )

2+ · · ·
]

, (1.10)

whereT is a (known) function ofχ ≡ 1/3(2χl + χs) only. As (χs− χl ) ∝ (δms− δml ) then this
agrees with our previous assertion: there is no linear term, the first term is quadratic inSU(3)
flavour symmetry breaking.

2. Lattice matters

We have generated 2+1 flavour gauge configurations using an action consisting of tree level
Symanzik glue and a mildy stout smearedO(a) non-perturbatively improved clover action, [7],
at four-β values,β = 5.40,5.50,5.65,5.80 on a variety of lattice sizes 243 × 48, 323 × 64 and
483×96. All box sizes haveL ∼> 2fm. All the pion masses used haveMπL > 4 and range from
about 500 to 220MeV. They are either at points on theSU(3) flavour symmetric line or along lines
of constantm. This gives 21 data sets at our disposal.

The quark massmq andδmq are given by

mq =
1
2

(

1
κq

− 1
κ0c

)

, δmq = mq−m=
1
2

(

1
κq

− 1
κ0

)

, (2.1)
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Figure 1: Top to bottom(Xlat
S )2 for S= t0 (circles), N (right triangles),w0 (squares),ρ (left triangles)

andπ (up triangles) for(β ,κ0) = (5.50,0.120900) (left panel) and(β ,κ0) = (5.50,0.120950) (right panel)
together with constant fits. The opaque points haveMπL < 4 and are not included in the fits. The vertical
line represents the physical point.

whereκ0c is chiral limit along symmetric line. (Note that this cancels inδmq.)

We first investigate the constancy of singlet quantities, as given in eq. (1.6). In Fig. 1 we plot
(Xlat

S )2 for S= t0, N, w0, ρ andπ for (β ,κ0) = (5.50,0.120900), (5.50,0.120950). As expected,
in agreement with the discussion of section 1, theX2

S singlet quantities are constant.

We now takeXS= const. to determine the scale

a2
S(κ0) =

Xlat2
S (κ0)

Xexp 2
S

. (2.2)

This is a function ofm0 or hereκ0. So if we varyκ0 (for example as in Fig. 1) – when pairsaS, aS′

cross this gives a common lattice spacinga. We apply this in particular here to2

(S,S′) = (π,N), (π,ρ) . (2.3)

For S= t0, w0 we can arrangeXexp
t0 , Xexp

w0 (from eq. (2.2)) so that these singlet quantities also cross
at the same point. In Fig. 2 we show these crossings forβ = 5.50. From the results for the four beta
values we can now make the last, continuum extrapolation. This is shown in Fig.3. A (weighted)

average of these results gives our final estimates for
√

texp
0 , wexp

0 as found in [1].

Alternatively we can write

2M2
K −M2

π
X2

S

=C−2
M2

π
X2

S

, (2.4)

(C = X2
π/X2

S) for S= N,ρ, t0,w0. In Fig. 4 we plot this function for(β ,κ0) = (5.50,0.120900),

2For theβ and pion mass values considered here, theρ andK∗ are stable particles.

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
2
6
4

Wilson flow scales R. Horsley

8.264 8.266 8.268 8.270 8.272
1/κ0

0.004

0.005

0.006

0.007

a S

2  =
 (

X
S

la
t )2 /X

S

ex
p2

 [f
m

2 ] 

S = π
S = N
S = t0

S = w0

β=5.50 (π,N)

8.264 8.266 8.268 8.270 8.272
1/κ0

0.004

0.005

0.006

0.007

a S

2  =
 (

X
S

la
t )2 /X

S

ex
p2

 [f
m

2 ] 

S = π
S = ρ
S = t0

S = w0

β=5.50 (π,ρ)

Figure 2: a2
S against 1/κ0 for S= π, N andt0, w0 together with quadratic fits forβ = 5.50. Left panel:

based on(π,N) crossing; Right panel: based on(π,ρ) crossing.
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Figure 3:
√

t0 andw0 (in fm) againsta2 (in fm2) from the (π,N) crossing (left panel) and(π,ρ) (right
panel) crossing together with a linear fit.
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Figure 4: (2M2
K −M2

π)/X2
S againstM2

π/X2
S, together with the fit from eq. (2.4) for(β ,κ0) = (5.50,0.120900)

(left panel) and(5.50,0.120950) (right panel). The stars correspond to the phenomenological values.
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(5.50,0.120950). This represents the path in the quark mass plane. Also shown are the experimen-
tal values (now including those ofS= t0, w0). We see that theseκ0 values straddle the optimumκ∗

0

– it is clear thatκ∗
0 lies closer to 0.120950 than 0.120900.

Finally we comment on our results. In the left panel of Fig. 5 we plota2 againstg2
0. The curve
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Figure 5: Left panel: a2 versusg2
0. The curve is from the running coupling constant, using the 2-loop

beta function normalised to theβ = 5.80 result. Right panel: 1/κ∗
0 versusg2

0. The horizontal dashed lines
represents the value in the continuum limit.

is the running coupling constant,g2
0 = 10/β using the 2-loop QCD beta function, normalised to

β = 5.80, namely

a2(β )
a2(β0)

=

(

β0

β

)− b1
b2
0 exp

(

− 1
10b0

(β −β0)

)

, β0 = 5.80, (2.5)

(b0, b1 are the first two coefficients of the beta function). There seems to be reasonable agreement
between the data points and the curve. The right hand panel of Fig. 5 indicates how the initial point,
κ∗

0 , on theSU(3) flavour symmetric line changes withg2
0.

3. Conclusions

Our programme is to tune strange and light quark masses to their physical values simultane-
ously by keepingm= 1/3(2ml +ms) = const.. As the light quark mass is decreased thenMπ ց
andMK ր. Singlet quantities, here denoted byXS(κ0) remain constant starting from a point on
the SU(3) flavour symmetric line — the Gell-Mann–Okubo result. We can use this result and
Xexp

S to determine theaS(κ0) scale. Varyingκ0 – determines when pairs of singlet quantities such
as(Xπ ,XN) and(Xπ ,Xρ) cross giving a common lattice spacinga. By arranging so thatXt0, Xw0

also cross here, we are able to give a determination of the ‘secondary’ scales
√

texp
0 andwexp

0 [fm].
Finally in Fig. 6 a comparison with other results is given.
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√

texp
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[9], together with the present results.

DIRAC 2 resources (EPCC, Edinburgh, UK), the BlueGene/P and Q at NIC (Jülich, Germany),
the Lomonosov at MSU (Moscow, Russia) and the SGI ICE 8200 and CrayXC30 at HLRN (The
North-German Supercomputer Alliance) and on the NCI National Facility in Canberra, Australia
(supported by the Australian Commonwealth Government). HP was supportedby DFG Grant No.
SCHI 422/10-1. PELR was supported in part by the STFC under contract ST/G00062X/1 and JMZ
was supported by the Australian Research Council Grant No. FT100100005 and DP140103067.
We thank all funding agencies.

References

[1] V. G. Bornyakovet al. [QCDSF–UKQCD Collaboration],arXiv:1508.05916[hep-lat].

[2] W. Bietenholzet al. [QCDSF–UKQCD Collaboration], Phys. Lett.B690 (2010) 436,
[arXiv:1003.1114[hep-lat]].

[3] W. Bietenholzet al. [QCDSF–UKQCD Collaboration], Phys. Rev.D84 (2011) 054509,
[arXiv:1102.5300[hep-lat]].

[4] M. Lüscher, JHEP1008 (2010) 071,[arXiv:1006.4518[hep-lat]].

[5] S. Borsanyiet al. [BMW Collaboration], JHEP010 (2012) 1209,
[arXiv:1203.4469[hep-lat]].

[6] O. Bäret al.Phys. Rev.D89 (2014) 034505,[arXiv:1312.4999[hep-lat]].

[7] N. Cundyet al. [QCDSF–UKQCD Collaboration], Phys. Rev.D79 (2009) 094507,
[arXiv:0901.3302[hep-lat]].

[8] A. Bazavovet al. [HotQCD Collaboration], Phys. Rev.D90 (2014) 094503,
[arXiv:1407.6387[hep-lat]].

[9] T. Blum et al. [RBC–UKQCD Collaborations],arXiv:1411.7017[hep-lat].

[10] Y. Nakamuraet al., Proc. Sci.Lattice 2010 (2010) 040,arXiv:1011.0199[hep-lat].

[11] R. G. Edwardset al., Nucl. Phys. Proc. Suppl.140 (2005) 832,arXiv:hep-lat/0409003.

7


