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1. Introduction

In our previous work [1], we presented the results of the wave function renormalization factor
Zq, mass renormalization factor Zm and the complete set of renormalization factors for bilinear
operators obtained on the 203× 64 MILC asqtad coarse lattice at a ≈ 0.12 fm with am`/ams =

0.01/0.05. In this proceeding, we analyse the Zq and Zm on the 283×96 MILC asqtad fine lattices
(a≈ 0.09 fm, am`/ams = 0.0062/0.031) and compare the results with those on the coarse lattices.

2. Results

We calculate the renormalization factors with Landau gauge fixing using HYP-smeared stag-
gered quarks. To do the chiral extrapolation, we perform the measurements with 5 valence quark
masses (am = 0.0062,0.0124,0.0186,0.0248,0.031) on the MILC fine ensembles at a ≈ 0.09 fm.
We also carry out the measurements for 20 external momenta given in Table 1. The measurements
are done over 30 gauge configurations.

n(x,y,z, t) a|p̃| GeV n(x,y,z, t) a|p̃| GeV n(x,y,z, t) a|p̃| GeV
(1,1,1,3) 0.4355 1.0197 (1,1,1,4) 0.4686 1.0974 (1,2,1,4) 0.6088 1.4257
(1,2,1,6) 0.6755 1.5819 (2,1,2,6) 0.7794 1.8250 (2,2,2,7) 0.9023 2.1130
(2,2,2,8) 0.9372 2.1947 (2,2,2,9) 0.9753 2.2839 (2,3,2,7) 1.0324 2.4177
(2,3,2,8) 1.0631 2.4895 (2,3,2,9) 1.0968 2.5684 (3,2,3,8) 1.1756 2.7529
(3,3,3,7) 1.2528 2.9337 (3,3,3,8) 1.2782 2.9931 (3,3,3,10) 1.3371 3.1312
(3,4,3,9) 1.4349 3.3602 (4,3,4,10) 1.5789 3.6973 (4,4,4,10) 1.6868 3.9501
(4,4,4,12) 1.7418 4.0788 (4,4,4,14) 1.8046 4.2259

Table 1: The list of momenta used for our analysis. The first column is the four vectors in the units of

(
2π

Ls
,

2π

Ls
,

2π

Ls
,

2π

Lt
), where Ls (Lt ) is the number of sites in the spatial (temporal) direction.

2.1 Wave Function Renormalization Factor Zq

Let us consider the conserved vector current to obtain the wave function renormalization factor
Zq. We use the same method as in Ref. [1] to obtain the Zq. First, we convert the raw data to the
data defined at a common scale (CS) µ0 = 3 GeV using the four-loop RG evolution equation in
Ref. [2, 3]. In Fig. 1, we present the raw data as the black circles and CS data as blue diamonds as
a function of the square of reduced momentum (ap̃)2 at a fixed quark mass (am = 0.0062).

After converting the raw date to the CS data, we perform the fitting with respect to quark
masses at a fixed external momentum to the following fitting function. We call this m-fit.

fm-fit = b1 +b2 ·am+b3 · (am)2 (2.1)

The fitting results are presented in Table 2 and the plot is given in Fig. 2(a).
We take b1 as the chiral limit values which are function of external momentum (ap̃)2. After

m-fit, we fit b1 to the following fitting function. We call this p-fit.

fp-fit = c1 + c2(ap̃)2 + c3 · ((ap̃)2)2 + c4 · (ap̃)4 (2.2)
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Figure 1: Zq obtained from conserved vector current (V × S) at a fixed quark mass (am = 0.0062). The
black circles represent raw data and blue diamonds are CS data at a CS µ0 = 3GeV.

b1 b2 b3 χ2/dof
0.84141(15) 0.0153(97) -0.31(17) 0.004(10)

Table 2: m-fit results for Zq at µ0 = 3GeV for a fixed external momentum n = (3,3,3,7).

c1 c2 c3 c4 χ2/dof
1.0567(11) -0.1452(10) 0.00294(14) 0.0082(11) 0.13(26)

Table 3: P-fit results for Zq at µ0 = 3GeV.

The fitting results are presented in Table 3 and the plot is presented in Fig. 2(b). The O((ap̃)2)

and higher order terms correspond to lattice artifacts. Hence, we take c1 as Zq value in RI-MOM
scheme at µ0 = 3GeV. Using the four-loop RG running formula [2, 3], we convert the Zq from the
RI-MOM scheme to the MS scheme.

We estimate the systematic error in two different ways. One systematic error comes from
truncation of four-loop RG running factor which is used to convert the Zq from the RI-MOM
scheme to the MS scheme. Hence, we take five-loop uncertainty (∼ O(α4

s )) and define Et as
follows.

Et = ZRI-MOM
q · (αs)

4 (2.3)

The other systematic error comes from the difference between the conserved vector and axial cur-
rents. Theoretically, Zq obtained from the conserved vector and axial currents must be identical to
each other. However, they are not same in our study. Hence, we take the difference of them as the
systematic error and define E∆ as follows.

E∆ = |Zq(V ⊗S)−Zq(A⊗P)| (2.4)

The total error (Etot) is obtained adding the statistical error (Estat) and the systematic errors in
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Figure 2: (a) m-fit results for Zq at a reduced momentum n = (3,3,3,7) and (b) p-fit results for yq. Here, we
use the conserved vector current at µ0 = 3GeV. yq ≡ Zq(µ0,am = 0)−〈c4〉(ap̃)4. The blue circles are used
for fitting.

quadrature. We present the final result of Zq in MS scheme at µ0 = 3GeV and its statistical and
systematic errors in Table 4.

ZMS
q (µ0) Estat Et E∆ Etot

1.0494 0.0011 0.0038 0.0099 0.0107

Table 4: Zq in the MS scheme at µ0 = 3GeV with statistical and systematic errors.

2.2 Quark Mass Renormalization Factor Zm

Quark mass renormalization factor Zm is obtained from the bilinear operator [S⊗S]. Here, we
use the same analysis method as in Ref. [1]. Note that we analyse Zq ·Zm instead of Zm directly.
After we obtain the Zq ·Zm in RI-MOM scheme at µ0 = 3GeV through m-fit and p-fit, we divide
by Zq obtained from the conserved vector current. First, we convert raw data to the CS data using
the four-loop RG running formula for Zq ·Zm. We present the raw and CS data for Zq ·Zm in Fig. 3.

Using the CS data for Zq ·Zm, we carry out m-fit and p-fit. The fitting functions for m-fit and
p-fit are

gm-fit = d1 +d2 ·am+d3 ·
1

(am)2 (2.5)

gp-fit = h1 +h2(ap̃)2 +h3 · ((ap̃)2)2 +h4 · (ap̃)4 . (2.6)

We present fitting results of m-fit in Table 5 and in Fig. 4 (a). We show fitting results of p-fit in
Table 6 and in Fig. 4 (b).

We determine Zm by dividing Zq ·Zm by Zq obtained using the conserved vector current. Then,
we convert Zm in the RI-MOM scheme into that in the MS scheme using the four-loop RG evolution
formula.

ZMS
m (µ0) =U(∞→ µ0,MS)U(µ0→ ∞,RI-MOM) ZRI-MOM

m (µ0) , (2.7)

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
2
7
3

NPR on Fine Lattice Jangho Kim

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

 0  0.5  1  1.5  2  2.5  3  3.5  4

Z
q
 ·
 Z

m
 

(ap~)
2
 

α = β = (1 ⊗ 1)

am = 0.0062 

raw
CS

Figure 3: Zq ·Zm obtained from [S×S] bilinear operator at am = 0.0062. Here, µ0 = 3 GeV.

d1 d2 d3 χ2/dof
1.25664(60) -0.354(15) -0.000000019(51) 0.017(25)

Table 5: Fitting results of Zq ·Zm for m-fit. The reduced momentum is fixed to n = (3,4,3,9).

h1 h2 h3 h4 χ2/dof
1.3069(39) -0.0459(35) 0.00191(62) 0.0308(45) 0.37(32)

Table 6: Fitting results of Zq ·Zm for p-fit.
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Figure 4: Fitting results of Zq ·Zm for (a) m-fit and (b) p-fit. For the m-fit, the reduced momentum is fixed
to n = (3,4,3,9). For the p-fit, ym ≡ (Zq ·Zm)(µ0,am = 0)−〈h4〉(ap̃)4. The blue circle data are used for
fitting.

where U(µ1 → µ2,R) is the RG evolution matrix from the scale µ1 to µ2 in the R scheme. The
results are summarized in Table 7. Here, the systematic errors are estimated in the same way as in
Zq.
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ZMS
m (µ0) Estat Et E∆ Etot

1.0117 0.0032 0.0044 0.0005 0.0055

Table 7: Zm in MS scheme at µ0 = 3GeV.
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Figure 5: Comparison of Zq(µ0) on the coarse and fine lattices. The red (blue) data represent results on the
coarse (fine) lattice.

2.3 Comparison of Zq and Zm between coarse and fine lattices

Now, we present the comparison of the Zq and Zm results at µ0 = 3GeV between coarse and
fine lattices in Fig. 5 and Fig. 6.

The results of Zq and Zm at µ0 = 3GeV on coarse and fine lattices are presented in Table 8.
We find that the total errors of ZMS

q and ZMS
m on fine lattice are reduced dramatically compared with

those of coarse lattice.

coarse fine

ZMS
q (3GeV) 1.0566(59)(231) 1.0494(11)(99)

ZMS
m (3GeV) 0.865(21)(25) 1.0117(32)(44)

Table 8: The comparison of Zq and Zm at µ0 = 3GeV between coarse and fine lattices. The first error is
statistical and the second is systematic.

3. Conclusion

Here, we present the results of the wave function renormalization factor Zq and mass renor-
malization factor Zm for the staggered bilinear operators defined in the MS scheme at µ0 = 3 GeV.
We use the NPR method in the RI-MOM scheme as an intermediate scheme. We use one of the
MILC asqtad fine (a≈ 0.09 fm) ensembles to calculate the matching factors. By comparing results
with those on the coarse ensembles, we find that the statistical and systematic errors of Zq and
Zm are reduced dramatically on the fine lattice. We plan to extend the calculation to the superfine
(a ≈ 0.06 fm) and ultrafine (a ≈ 0.045 fm) ensembles in the future. As a consequence, we will
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Figure 6: Comparison of Zm(µ0) on the coarse and fine lattices. The red (blue) data represent results on the
coarse (fine) lattice.

study on the scalability of Zq and Zm. We also plan to calculate the renormalization factors on the
fine ensembles with different sea quark masses, which will help us to understand their dependence
on sea quark masses.
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