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1. Introduction

The idea of considering the average spin in cells of variable sizes, originally put forward
by Leo Kadanoff [1], has played a crucial role in the development of the renormalization group
ideas. Leo Kadanoff’s untimely death a few weeks ago should make us reflect on the fact that
theoretical innovations can take a long time to be practically realized. Despite its great visual
appeal, the blockspinning procedure is not easy to implement numerically. It typically involves
approximations that are difficult to improve. It took several decades to develop numerical methods
where blocking can be achieved with controllable errors. Ultimately, the question of continuum
limits of lattice models should be addressed directly with the blocking procedure.

The Tensor Renormalization Group (TRG) method combined with higher order SVD were
used to construct accurate blocking methods to deal with the thermodynamics of the Ising model
[2]. The TRG provides an exact block spinning procedure which separates the degrees of freedom
inside the block (integrated over) from those kept to communicate with the neighboring blocks.
For the Ising model, two state approximations provide accurate exponents in 2D (ν = 0.99) but less
accurate exponents in 3D (ν = 0.74) [3]. We realized that adding a few more states, does not imme-
diately improve the results. Similar findings were reported by Leo Kadanoff and collaborators [4].
This has remained a puzzle and Leo was convinced that its resolution may involve understanding
approximate hierarchical symmetries. Hopefully younger generations will help make progress in
this direction.

The TRG formulation for lattice models with compact gauge or spin fields can be facilitated
by the use of character expansions. This was used to derive exact blocking formulas for the O(2)
and O(3) models, principal chiral models, Abelian gauge theories and SU(2) gauge theories [5].
The truncation procedure relies on the diagonalization of positive matrices and there seems to be
no sign problems [6] associated with the method. Fermions can be included without sign problem,
for instance for the Schwinger model [7] or the Gross-Neveu model [8]. The TRG method allows
to smoothly connect the relativistic formulation where space and time are treated on equal footing,
with the Hamiltonian formalism. This feature has been exploited to propose quantum simulators
for the O(2) model [9] and the Abelian Higgs model [10]. The transfer matrix formalism developed
in Ref. [9] allows us to introduce finite temperature or external field effects. It would be interesting
to connect the TRG formalism with the Matrix Product States calculations of finite temperature
[11] or external electric field effects [12]. TRG methods are also used in the context of spin foams
[13]. The blocking program has evolved in many directions and is alive.

In these proceedings, we discuss TRG calculations for the O(2) model with a chemical po-
tential µ . More details can be found in Ref. [14] and related studies in Refs. [15, 16, 17]. In
Ref. [14], we compared the TRG calculation of the particle density in the superfluid phase with a
sampling algorithm [18] developed using a classical version of the worm algorithm [19] and found
that the distributions obtained with the two methods agree well. A transfer matrix formulation of
the TRG method briefly explained below can be used to calculate the thermal entropy and the en-
tanglement entropy. As we increase µ to go across the superfluid phase between the first two Mott
insulating phases, and for a sufficiently large temporal size, we see an interesting fine structure:
the average particle number and the winding number of most of the world lines in the Euclidean
time direction increase by one unit at a time. At each step, the thermal entropy develops a peak
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and the entanglement entropy increases until we reach half-filling, and then decreases in a way
that approximately mirrors the ascent. This suggests an approximate fermionic picture which can
be qualitatively understood from the approximate correspondence with the spin-1/2 XY quantum
chain when µ is large enough to justify a two-state approximation. We also report progress in
optimization following earlier attempts [20, 21].

2. TRG formulation of the O(2) model with a chemical potential µ

The partition function for the model on a Lt ×Lx lattice can be written as

Z =
∫

∏
(x,t)

dθ(x,t)

2π
e−S , (2.1)

with the action

S =−βt̂ ∑
(x,t)

cos(θ(x,t+1)−θ(x,t)− iµ)−βx̂ ∑
(x,t)

cos(θ(x+1,t)−θ(x,t)). (2.2)

The action is complex, but a positive representation is obtained using character expansions [22]:

Z = ∑
{n}

∏
(x,t)

In(x,t),x̂(βx̂)In(x,t),t̂ (βt̂)e
µn(x,t),t̂ ×δn(x−1,t),x̂+n(x,t−1),t̂ ,n(x,t),x̂+n(x,t),t̂ . (2.3)

The Kronecker delta function reflects the particle number conservation which can be exploited to
construct a worm algorithm [18] and sample the allowed worm configurations (see Fig. 1). The n
variables associated with the links are sometimes mistakenly called dual variables. In two dimen-
sions, the dual variables [22] are associated with the plaquettes of the dual lattice. In continuum
language, the plaquette field φ is used to get a divergenceless vector nµ = εµν∂νφ .
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Figure 1: Worm configurations for µ =2.93, 3.00, 3.07 and 3.14 for β = 0.1, Lx = 4 and Lt = 256. Almost
all the |n|’ s are 0 or 1. Between most time slices we have n time links carrying a current 1 and Lx−n time
links carrying no current. In rare occasions, lines merge or cross (see Ref. [14] for details).
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The partition function can be written as Z = TrTLt , with T the transfer matrix. Following Ref.
[9], the matrix elements of T can be expressed as a product of tensors associated with the sites of a
time slice (fixed t) and traced over the space indices

T(n1,n2,...nLx )(n
′
1,n
′
2...n

′
Lx )

= ∑
ñ1ñ2...ñLx

T (1,t)
ñLx ñ1n1n′1

T (2,t)
ñ1ñ2n2n′2...

. . .T (Lx,t)
ñLx−1 ñLx nLx n′Lx

with
T (x,t)

ñx−1ñxnxn′x
=
√

Inx(βt̂)In′x(βt̂)Iñx−1(βx̂)Iñx(βx̂)e(µ(nx+n′x))δñx−1+nx,ñx+n′x

The transfer matrix can be constructed using a hierarchical blocking procedure when Lx = 2q. We
can express the space contraction of two tensors with 4 indices as a new tensor with 4 indices (this
involves a projection) and repeat q times (see Refs. [9, 14]). The phase diagram can be constructed
by considering the changes in the particle density as µ increases. In the Mott insulating (gapped)
phase, the density stays constant, while in the superfluid phase (SF) it increases with µ . As we reach
the SF phase, the gap disappears and we expect conformal symmetry to be present. In addition,
the thermal and entanglement entropy develop a non-trivial behavior described in the next section.
The phase diagram in the (β ,µ) plane is shown below in Fig. 2 together with the thermal entropy
in a small region of the phase diagram (see also lower right corner of Fig. 3).
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Figure 2: Left: Mott Insulating “tongues" with particle density 0, 1, 2 ... from bottom to top. Right: thermal
entropy in a small region of the β −µ plane on a 4×128 lattice. The blue regions are close to zero and the
yellow ochre regions peak near ln2. The MI phase with ρ=0 is below the lowest light band, the MI phase
with ρ=1 is above the highest light band and there is a single SF phase in between the two MI phases.

3. Thermal entropy and entanglement entropy

In the first SF region, we can tune µ in such way that most of the configurations will have a
number of particle n≤ Lx. If we divide the system in two parts A and B of equal size Lx/2 we have
n+1 ways to arrange nA +nB = n. The thermal density matrix for the whole system AB is ρ̂AB ≡
TLt/Z . If the largest eigenvalue of the transfer matrix is non degenerate with an eigenstate denoted
|Ω〉, we have the pure state limit limLt→∞ ρ̂AB = |Ω〉〈Ω| . We will work at finite Lt and will deal
with the entanglement of thermal states. In general, the eigenvalue spectrum {ρABi} of ρ̂AB can then
be used to define the thermal entropy ST = −∑i ρABi ln(ρABi). In order to define the entanglement
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entropy, we use the reduced density matrix ρ̂A as ρ̂A ≡ TrBρ̂AB. The eigenvalue spectrum {ρAi} of
the reduced density matrix can then be used to calculate the entanglement entropy

SE =−∑
i

ρAi ln(ρAi). (3.1)

We use blocking methods until A and B are each reduced to a single site. Numerical results for
Lx = 4 are shown in Fig. 3 for various Lt . As Lt increases, both entropies develop the distinct
features stated in the introduction. It is easy to see that near half-filling (n = Lx/2), the number of
ways to arrange the particles in A and B is of order Lx/2 and the entanglement entropy of order
ln(Lx). Assuming a conformal behavior, it is possible to use this observation to measure the central
charge [23].
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Figure 3: Entanglement entropy (EE, dash line) and thermal entropy (TE, solid line) for β = 0.1, Lx = 4
and Lt = 16, 32, 64 and 128.

4. Optimization through symmetry

The initial O(2) tensor has a built-in charge conservation . This local constraint allows a sim-
plified parameterization of the tensor. For every tensor involved in contraction, one less sum/loop
needs to be performed. In general, after one iteration, many states possess the same charge and a
state can be labeled by its charge and a degeneracy index. We see that the charges form a distri-
bution, then we can loop over the charges and treat the degeneracy index exactly as tensor indices.
This gives good results when the number of charges has been reduced by iteration. The initial
iteration is the worst since there is only one state per charge. However, after the first couple iter-
ations, the iteration time decreases drastically with the optimized method (see Fig. 4 left). After
many iterations (large volume), the additional iteration time is negligible. As the number of states
increases, the optimized method preforms much better (see Fig. 4 right). After the conference, an
even better scaling was obtained.

5. Conclusions

We discussed the classical O(2) model in 1+1 dimensions with a chemical potential µ . The
TRG formulation allows reliable calculations of the phase diagram and particle density which agree
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Figure 4: Computing time versus iteration number (left) and number of states (denoted Dbond , right), for
the optimized method compared to the standard one (HOTRG).

well with the worm algorithm. The TRG method was then used to calculate the thermal entropy
and the entanglement entropy without using the replica trick. At sufficiently large Lt , the thermal
entropy and the entanglement entropy show a rich fine structure as a function of the chemical po-
tential. An approximate picture of weakly interacting loops winding around the Euclidean time
direction and carrying particle number one provides a particle-hole symmetry picture which justi-
fies the mirror symmetry of the entanglement entropy with respect to half-filling. A more detailed
understanding of the correspondence with the spin-1/2 XY model and calculations of the central
charge are in progress [24]. Taking into account the particle number conservation allows more
efficient TRG algorithms. A more detailed report on this question should follow [25]. It has been
almost half a century since the important paper of Leo Kadanoff [1] has been published and we
expect that its ramifications will keep growing for many more years.
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