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In Yang–Mills theory, the cumulants of the naïve lattice discretization of the topological charge
evolved with the Yang–Mills gradient flow coincide, in the continuum limit, with those of the uni-
versal definition. We sketch in these proceedings the main points of the proof. By implementing
the gradient-flow definition in numerical simulations, we report the results of a precise compu-
tation of the second and the fourth cumulant of the SU(3) Yang–Mills theory topological charge
distribution, in order to measure the deviation from Gaussianity. A range of high-statistics Monte
Carlo simulations with different lattice volumes and spacings is used to extrapolate the results to
the continuum limit with confidence by keeping finite-volume effects negligible with respect to
the statistical errors. Our best result for the topological susceptibility is t2
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1. Introduction

The Witten–Veneziano (WV) mechanism [1, 2] relates the mass of the η ′ meson to the topo-
logical susceptibility in Yang–Mills (YM) theory, a quantity that can be measured on the lattice.
However, the naïve lattice discretization of the topological charge density needs an unambiguous
renormalization condition to be correctly defined. When considering its cumulants, such as the
susceptibility, short-distance singularities contribute also to an additive renormalization. On the
contrary, if defined using Ginsparg–Wilson (GW) fermions [3, 4, 5], the topological charge and its
cumulants have finite and unambiguous continuum limits without renormalization, which satisfy the
anomalous chiral Ward identities behind the WV mechanism [6, 7, 8].

The recent proposal of evolving the naïve discretization with the YM gradient flow [9] is
an alternative definition with a finite and unambiguous continuum limit [9, 10], and is particu-
larly appealing because its numerical evaluation is significantly cheaper than the definition using
Neuberger’s GW satisfying fermions.

In these proceedings we discuss our recent results [11]. In Section 2 we show that in the YM
theory the cumulants of the topological charge with the naïve discretization at positive flow time
coincide, in the continuum limit, with those of the universal definition. In the following sections,
by implementing the gradient-flow definition we compute the topological susceptibility with a
precision 5 times better than the reference computation with Neuberger’s definition [12] and the
ratio R between the fourth and the second cumulant with all systematics negligible with respect to
the statistical error.

2. Cumulants of the topological charge on the lattice

In the continuum, given the topological nature of the topological charge

Q =
∫

d4xq(x) , q(x) =
1

32π2 εµνρσ tr
{

FµνFρσ

}
, (2.1)

it’s easy to see that Q is invariant under continuous deformation of the fields induced by the YM
gradient flow. Indeed, denoting with a superscript t the flow-time dependence1,

∂tqt = ∂ρwt
ρ , wt

ρ =
1

8π2 εµνρσ tr
{

F t
µνDαF t

ασ

}
, (2.2)

where wt
ρ is a local dimension-5 gauge-invariant pseudovector field, thus ∂tQt = 0.

Eq. (2.2) implies, for any finite (multi)local field O(y) at a physical distance from x,

〈
qt(x)O(y)

〉
=
〈
qt=0(x)O(y)

〉
+∂ρ

∫ t

0
dt ′
〈

wt ′
ρ(x)O(y)

〉
, x 6= y . (2.3)

The t = 0 limit of this equation is taken as the definition of the renormalized q(x). For x 6= y, there
are no local fields of d < 5 that wt

ρ can mix with, thus〈
qt=0(x)O(y)

〉
= lim

t→0

〈
qt(x)O(y)

〉
. (2.4)

1If not explicitly indicated, we assume t > 0.
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We are interested in cumulants of the topological charge

Ct
n =

∫
d4z1 . . .d4z2n−1

〈
qt(0)qt(z1) . . .qt(z2n−1)

〉
. (2.5)

To study the short-distance singularities at t = 0, we supplement the theory with degenerate valence
quarks and substitute a single qt=0(zi) with a chain of renormalized (pseudo)scalar densities [8]∫

d4zqt=0(z)→−m5
∫ (

∏d4xi
)
〈P51(x1)S12(x2)S23(x3)S34(x4)S45(x5)〉F . (2.6)

When one of the x j is close to 0, according to the operator product expansion

qt=0(0)Si j(x)
|x|→0−−−→ c(x)Pi j(0)+ . . . , (2.7)

where c(x) is a function that diverges as |x|−4 for |x| → 0 and the dots indicate subleading con-
tributions. The Wilson coefficient of the leading short-distance singularity can be computed in
perturbation theory. From Eq. (2.2) we have〈

qt(0)Si j(x)O(y)
〉
=
〈
qt=0(0)Si j(x)O(y)

〉
+∂ρ

∫ t

0
dt ′
〈

wt ′
ρ(0)Si j(x)O(y)

〉
, (2.8)

where again O(y) is any finite (multi)local field at a physical distance from 0 and x. When t > 0, the
l.h.s. has no singularities for |x| → 0, thus singularities must cancel in the r.h.s. and c(x) must be of
the form

c(x) = ∂ρuρ(x) (2.9)

which does not contribute when integrated over spacetime, and leads to ∂tCt
n = 0 for every t ≥ 0.

2.1 Ginsparg–Wilson discretization of cumulants

On the lattice, the gauge field evolved with the YM gradient flow is smooth on the scale of
the cut-off. Gauge-invariant local fields constructed with the gauge field at positive flow time
are finite as they stand, with the universality class determined only by their asymptotic behaviour
in the classical continuum limit [9, 10]. Short-distance singularities cannot arise because of the
exponential damping at high frequencies enforced with the flow. Therefore, to show that cumulants
of the topological charge at t > 0 satisfy the proper singlet chiral Ward identities it is sufficient to
work with a particular discretization of q. The GW definition qGW(x) [3, 4, 5] has a privileged rôle2

since the bare lattice cumulants with the GW lattice discretization,

Ct
GW,n = a4(2n−1)

∑
xi

〈
qt

GW(0)qt
GW(x1) . . .qt

GW(x2n−1)
〉
, (2.10)

are finite and satisfy the anomalous chiral Ward identity for t = 0 [6, 7, 8].
This is not obvious at t > 0. To prove it, first consider the susceptibility Ct=0

GW,1 and apply the
flow to one of the two densities. While no short-distance singularities are present and qt

GW is finite
as it stands, qt=0

GW can have a renormalization constant Zq
3. Using the lattice equivalent of Eq. (2.6),

it’s possible to show that qt=0
GW with Zq = 1 converges to the correct continuum limit with rate a2.

2A concrete example is the definition with Neuberger’s fermions [3]: a4qN(x) =−( ā
/

2 ) trγ5DN(x,x).
3Zq is at most logarithmically divergent, since there are no other pseudoscalar gauge-invariant operators with d ≤ 4.
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Then, consider again the susceptibility Ct=0
GW,1 and replace one of the two qt=0

GW with its lattice
density-chain expression. The discussion in the continuum case applies here and Eq. (2.9) guarantees
that there are no short-distance singularities. This result and Zq = 1 imply that

lim
t→0

lim
a→0

a4
∑
x

〈
qt

GW(0)qt=0
GW(x)

〉
= lim

a→0
a4

∑
x

〈
qt=0

GW(0)qt=0
GW(x)

〉
. (2.11)

By replacing the t = 0 density on the l.h.s. with the evolved one, no further singularities arise. The
same argument applies to Ct

GW,n replacing 2n−1 charges with their density-chain expressions, and
we arrive to the result

lim
t→0

lim
a→0

Ct
GW,n = lim

a→0
Ct=0

GW,n . (2.12)

2.2 Universality at positive flow time

The naïve discretization of the topological charge density qL(x) is the lattice version of Eq. (2.1)
in which a discretized field strength tensor is used

Fa
µν(x) =−

i
4a2 tr

{
[Qµν(x)−Qνµ(x)]T a} , (2.13)

with

Qµν(x) =Uµ(x)Uν(x+aµ̂)U†
µ(x+aν̂)U†

ν (x)

+Uν(x)U†
µ(x−aµ̂ +aν̂)U†

ν (x−aµ̂)Uµ(x−aµ̂)

+U†
µ(x−aµ̂)U†

ν (x−aµ̂−aν̂)Uµ(x−aµ̂−aν̂)Uν(x−aν̂)

+U†
ν (x−aν̂)Uµ(x−aν̂)Uν(x+aµ̂−aν̂)U†

µ(x) .

(2.14)

At t = 0, qt=0
L (x) require a multiplicative renormalization constant [13]. The corresponding cumu-

lants Qt=0
L have additional ultraviolet power-divergent singularities and they do not have a well

defined continuum limit. Conversely, at positive flow time the density qt
L(x) shares with qt

GW(x)
the same asymptotic behaviour in the classical continuum limit. The universality at positive flow
time together with Eq. (2.12) imply that the topological charge cumulants discretized with the naïve
definition at positive flow time

lim
t→0

lim
a→0

Ct
L,n = lim

a→0
Ct=0

GW,n (2.15)

and satisfies the anomalous chiral Ward identities. It is interesting to note, however, that at fixed
lattice spacing there can be differences4.

3. Numerical setup

To compute the topological susceptibility χ t ≡Ct
L,1 and the fourth cumulant Ct

L,2, we discretize
SU(3) YM theory using the standard Wilson plaquette action on a finite lattice of size L

/
a in all four

spacetime directions and periodic boundary conditions. The Monte Carlo updates the gauge field
implementing the Cabibbo–Marinari scheme, with a heat bath sweep of all lattice links followed by
L
/
(2a) over-relaxation sweeps. We simulate the lattices listed with their parameters in Table 1.

4For instance, the topological susceptibility with the naïve definition at t > 0 is not guaranteed to go to zero in the
chiral limit at finite lattice spacing in the presence of fermions.

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
3
1
8

Non-Gaussianity of the topological charge distribution in SU(3) Yang–Mills theory Marco Cè

Lattice β L
/

a L [fm] a [fm] Nconf Nit t0
/

a2 L4χ R

A1 5.96 10 1.0 0.102 36000 30 2.995(4) 0.701(6) 0.39(3)
B1 12 1.2 144000 2.7984(9) 1.617(6) 0.187(24)
C1 13 1.3 280000 2.7908(5) 2.244(6) 0.177(23)
D1 14 1.4 505000 2.7889(3) 3.028(6) 0.209(23)
E1 15 1.5 880000 2.78892(23) 3.982(6) 0.202(23)
F1 16 1.6 1440000 2.78867(16) 5.167(6) 0.157(22)

B2 6.05 14 1.2 0.087 144000 60 3.7960(12) 1.699(7) 0.24(3)
D2 17 1.5 144000 3.7825(8) 3.686(14) 0.22(5)

B3 6.13 16 1.2 0.077 144000 90 4.8855(15) 1.750(7) 0.22(3)
D3 19 1.5 144000 4.8722(11) 3.523(13) 0.16(5)

B4 6.21 18 1.2 0.068 144000 250 6.2191(20) 1.741(7) 0.20(3)
D4 21 1.4 144000 6.1957(14) 3.266(12) 0.21(5)

Table 1: Ensembles and statistics used in this study together with measured observables. For each lattice we
give the label, β = 6

/
g2

0 , the spatial extent of the lattice, the lattice spacing, the number Nconf of independent
configurations generated, the number of sweeps Nit required to space them, the measured reference scale
t0
/

a2 , the susceptibility L4χ and the ratio R.

We use the {B1 . . .B4} series, with physical volume of∼ (1.2fm)4, to extrapolate the continuum
limit of the fourth cumulant. The choice of a very small volume is forced by the fact that statistical
error on CL,2 are O(V ). Given the higher statistical accuracy, we extrapolate the continuum limit
of the susceptibility from the {D1 . . .D4} series, with physical volume of ∼ (1.4fm)4. The other
lattices are used to check that the finite-volume systematics is under control and negligible with
respect to the final statistical error.

High-precision scale setting is obtained measuring the energy density Et at positive flow time
to compute the reference flow time t0 [9] as the solution of

t2 〈Et〉∣∣
t=t0

= 0.3 , Et =
1

4V ∑
x

Fa,t
µν (x)F

a,t
µν (x) . (3.1)

The YM gradient flow equation is integrated numerically implementing a fourth order structure-
preserving Runge–Kutta–Munthe-Kaas method5. On each lattice, the gauge field is evolved ap-
proximatively up to ∼ 1.2t0. Two different RK step size are used to check the systematics from the
numerical integration and a smaller step size is used on per-configuration basis to have negligible
systematic errors with respect to the statistical error.

Dedicated simulations are performed to measure the integrated autocorrelation time τint of Q,
its moments and t0. In the range of β considered, Q has the largest τint which increases rapidly
toward the continuum limit. The number of Cabibbo–Marinari updates between measurements in
the main runs, Nit in Table 1, is chosen to have statistically independent measurements of Q.

Observables are measured at t = t0 and given in terms of the two dimensionless quantities
t2
0 χ ≡ t2

0Ct0
L,1 and ratio R≡ Ct0

L,2

/
Ct0

L,1 between the fourth and second cumulant. Bare lattice results
are reported in Table 1.

5See Appendix B of Ref. [11] for the details.
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Figure 1: (a) Topological susceptibility t2
0 χ with extrapolation to the continuum limit. (b) The ratio χ t

/
χ

(errors are smaller than symbols) for several values of t, and its extrapolation to the continuum limit.

4. Results
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Figure 2: The ratio R with continuum extrapolation.
In blue the dilute instanton gas model prediction R = 1.

At the coarsest lattice spacing, no sys-
tematic volume effects are observed in the
value of t2

0 χ starting from V ∼ (1.4fm)4.
Thus, the continuum value of t2

0 χ is extrap-
olated in Figure 1a from the values mea-
sured on the lattices {D1, . . . ,D4}, fitting
with O

(
a2
)

discretization errors according
to Symanzik effective theory. The best fit is
obtained with a linear fit restricted to the three
finest lattices and gives

t2
0 χ = 6.67(7)×10−4 . (4.1)

A linear fit including the coarsest lattice and a quadratic fit of all points give compatible results.
The cumulants of the topological charge are expected to be t-independent in the continuum

limit. In Figure 1b we show the topological susceptibility computed at various t normalized to its
value at t0. The data points have statistical errors in the range 0.1–1 per mille, due to the correlation
between numerators and denominators. t-dependent discretization effects are fitted with a quadratic
function in a2

/
t0 , obtaining for each t an intercept compatible with 1 within statistical errors in the

range 0.5–5 per mille. This represent a high-precision test of universality in the continuum limit of
the gradient-flow discretization of the topological charge.

The continuum value of R is extrapolated in Figure 2 from the results from the V ∼ (1.2fm)4

lattices {B1, . . . ,B4} without visible finite-volume systematics. The result of a linear fit in a2 is

R = 0.233(45) , (4.2)

with a compatible result obtained from a constant fit.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
3
1
8

Non-Gaussianity of the topological charge distribution in SU(3) Yang–Mills theory Marco Cè

5. Conclusions

In Ref. [11] we prove that, in the continuum limit, the cumulants of the topological charge
defined by the Yang–Mills gradient flow coincide with those of the universal definition appearing in
the chiral Ward identities. We use this definition to study the topological charge distribution with
an unprecedented precision. Our result in Eq. (4.2) is the first one for the ratio R with systematic
and statistical errors under control. The value in Eq. (4.2) agrees with the result of Ref. [14], it is
inconsistent with the dilute instanton gas model prediction of R = 1, and it is compatible with the
large-Nc prediction of being of order 1

/
N2

c . We also measure the topological susceptibility with
unprecedented precision. The value in Eq. (4.1) is compatible with other lattice results [12, 15]. As
a by-product, we obtain a sub-percent numerical test of universality of the gradient-flow definition.
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