PROCEEDINGS

OF SCIENCE

Anatomy of SU(3) flux tubes at finite temperature

Paolo Cea
Dipartimento di Fisica, Universita di Bari,

and INFN - Sezione di Bari, I-70126 Bari, Italy
E-mail: paolo.cealba.infn.it

Leonardo Cosmai
INFN - Sezione di Bari, I-70126 Bari, Italy

E-mail: leonardo.cosmai@ba.infn.it

Francesca Cuteri*
Dipartimento di Fisica, Universita della Calabria,

and INFN - Gruppo collegato di Cosenza, I-87036 Rende, Cosenza, Italy
E-mail: francesca.cuteri@fis.unical.it

Alessandro Papa

Dipartimento di Fisica, Universita della Calabria,

and INFN - Gruppo collegato di Cosenza, 1-87036 Rende, Cosenza, Italy
E-mail: alessandro.papa@fis.unical.it

An attempt to adapt the study of color flux tubes to the case of finite temperature has been made.
The field is measured both through the correlator of two Polyakov loops, one of which connected
to a plaquette, and through a connected correlator of Wilson loop and plaquette in the spatial
sublattice. Still the profile of the flux tube resembles the transverse field distribution around an
isolated vortex in an ordinary superconductor. The temperature dependence of all the parameters

characterizing the flux tube is investigated.

The 33rd International Symposium on Lattice Field Theory
14 -18 July 2015
Kobe International Conference Center, Kobe, Japan

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/


mailto:paolo.cea@ba.infn.it
mailto:leonardo.cosmai@ba.infn.it
mailto:francesca.cuteri@fis.unical.it
mailto:alessandro.papa@fis.unical.it

Anatomy of SU(3) flux tubes at finite temperature Francesca Cuteri

1. Introduction

The color confinement phenomenon accounts for our inability to detect free colored particles,
with the QCD spectrum consisting of color-singlet particle states only. Although yet unexplained
from first principles, color confinement can be interpreted within a few possible scenarios and
lattice QCD studies are relevant in order to verify/disprove the validity of the different options.

It was conceived, by 't Hooft and Mandelstam, that the QCD vacuum could be modeled as a
coherent state of color magnetic monopoles, called dual superconductor, since the condensation of
color magnetic monopoles is thought to be analogous to the formation of Cooper pairs in the BCS
theory of superconductivity [1]. A dual superconductor is a superconductor in which the roles of
the electric and magnetic fields are exchanged. The analogy is suggested both by the the absence of
free colored states, and by the fact that meson resonances lie approximately on Regge trajectories,
indicating that a quark-antiquark g pair is connected by a string with a constant string tension,
i.e. with an energy that increases linearly with the distance R between the color charges. Cor-
respondingly, in the large-distance regime, the nonperturbative dynamics squeezes the color-field
lines, giving rise to flux tubes connecting the two charges. The formation of color flux tubes can be
interpreted as the dual analog of the Meissner effect. Lattice QCD allows us to investigate the color
confinement phenomenon nonperturbatively and, in this framework, convincing evidences both for
the color magnetic monopole condensation, and for the existence of color tubelike structures, have
been produced [2]. In previous studies [3] the tubelike distribution of color fields in presence of
static quarks has been studied both in the SU(2) and SU(3) pure gauge theory at zero temperature.
As a meaningful extension of those studies, the structure of flux tubes in the SU(3) pure gauge
theory at nonzero temperature, and across the deconfinement transition temperature 7, is now in-
vestigated. There is a twofold motivation for this study: on one hand, the nonperturbative study of
flux tubes at T # 0 is relevant to clarify the formation of ¢¢ and bb bound states in heavy-ion col-
lisions at high energies; on the other hand, the study of the behavior of flux tubes across 7; allows
us to check the validity of the dual superconductor model. For our investigation we have made
use of the MILC code, which has been suitably modified by us in order to introduce the relevant
observables. The use of the MILC code will allow, in future, simulations for the physically relevant
case of full QCD with dynamical quarks.

The color field distribution generated by a g4 static pair in the vacuum is probed by means of
the connected correlators [2]
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In both cases, Up = Uyy(x) is the plaquette in the (i, V) plane, and L is the Schwinger line con-
necting the plaquette, either to the Wilson loop W, or to a Polyakov loop P; N is the number of
colors. A schematic representation of the correlators is given in Fig. 1. The use of the connected
correlator (1.2) at T = 0 is limited to the exploration of the chromomagnetic sector. The linearity
of py"" and pp”"" in the field, in the SU(3) case, holds up to terms of order a” in the lattice spacing.
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Figure 1: (Left) The connected correlator between the plaquette Up and the Wilson loop. (Right)

The correlator between two Polyakov loops, one of which connected to a plaquette Up. The sub-
traction in ppGy" is not explicitly drawn.

The linear term in Fyy, then, dictates the dominant behavior of our correlators in the continuum
limit, and a symbolic expression for the naive continuum limit of the connected correlators is

0
piE 5 d’g [(n“Fﬁv> qq} : (13)

In this formula ( ),; denotes the ensemble average of the field projection onto an unknown direc-
tion (in color space), n?, determined by the static gg pair, and B = 2N/¢? is the coupling constant.
The components of the field strength tensor can, then, be extracted as

B ) = [ P pige () (14

The color field distribution of flux tubes and, in particular, the shape of color fields, in a
direction perpendicular to the axis of the flux tube joining the ¢4 pair, is probed by varying position
and orientation of the plaquette. The dual superconductor model enters our analysis in the choice
of the function to fit the transverse shape of the field. Here we exploit the dual analog of a result
presented in [4]:

by = 0125081 )] g e oty Ls
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where @t = 1/4 is the inverse of the London penetration depth, &, is the variational core radius
parameter, and the quantity at the left-hand side is the longitudinal chromoelectric field, which has
been found (also at 7' # 0) to be the only statistically sizable color field component forming the
flux tube. By fitting Eq. (1.5) to E;(x;) data, one can extract ¢, A and &,. The Ginzburg-Landau k
parameter can be obtained by

A V2

K=F="y 1 K3 (o) /K7 (0)]2 (1.6)

and the coherence length £ can be deduced from x = A/¢.
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Figure 2: ¢ vs smearing for measurements of the Polyakov (left) and Wilson (right) connected
correlator at T # 0, on a 40° x 10 lattice.

2. Color flux tubes on the lattice

We performed our numerical simulations using the Wilson action on lattices with periodic
boundary conditions and the heat-bath algorithm combined with overrelaxation. To reduce the
autocorrelation time, measurements were taken every 10 updatings. The considered lattice sizes
had temporal extensions ranging from L, = 10 up to L; = 16 and spatial size L; fixed to keep the
aspect ratio equal to four. The temperature varies according to:

1

T apLe -
where the scale is fixed with the parameterization in [5] and /o = 420MeV. A relevant variable
to be taken under control in our simulations is the distance A between the static sources (size of
the Wilson loop or distance between Polyakov loops). Consistently with our previous studies [3],
we have found that A has to be chosen in a way that the distance in physical units is beyond
half a fermi. In such a distance regime, the only parameter affected by changes in the physical
distance, produced for example by keeping A fixed in lattice units, while varying 3, is ¢. It was
then decided to approximately fix the physical, rather than the lattice, distance between the sources.
The advantages are that less statistics is needed for smaller couplings and that the achievement of
the continuum limit can be shown already at the level of the measured field. In order to reduce the
ultraviolet noise, we applied one step of HYP smearing [6] to links in the temporal direction, with
smearing parameters (0,0, 03) = (1.0,0.5,0.5), and Napg steps of APE smearing [7] to spatial
links, with smearing parameter oapg = 0.50. As a criterion to determine the optimal smearing
step, the position of the peak in ¢ (signalling the maximal disentanglement of our signal from
background noise) has been used.

3. Flux tubes across the deconfinement transition

In this section we present numerical results on the chromoelectric field distribution generated
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Figure 3: (Left) Scaling of E;(x;) at T ~ 0.87,. (Right) E;(x;) at fixed lattice size 403 x

10, and couplings B = 6.050,6.125,6.200,6.265,6.325 corresponding to temperatures 7 /T, =

0.8,0.9,1.0,1.1,1.2. For the critical temperature, we used 7, = 260MeV. The solid lines are

the fit of our data to Eq. (1.5).

Table 1: Fit values on a N, x N, = 403 x 10 lattice for several values of 7.

B | Alfm] | T/T, ¢ u & x;
6.050 | 0.761 0.8 6.201(68) | 0.382(13) | 3.117(191) | 0.02
6.125 | 0.761 0.9 | 5.941(101) | 0.337(20) | 3.652(360) | 0.01
6.200 | 0.756 1.0 2.061(45) | 0.328(22) | 3.312(389) | 0.01
6.265 | 0.757 1.1 1.359(9) 0.344(7) | 4.286(131) | 0.06
6.325 | 0.760 1.2 1.324(11) 0.332(8) | 4.248(142) | 0.06

by a static ¢g pair at T # 0, measured through the connected correlator in Eq. (1.1). Before studying
the temperature dependence of the chromoelectric field shape, a scaling analysis was performed at a
fixed temperature of 7 = 0.87,.. As shown in Fig. 3 (Left), E; (x;), measured at the optimal smearing
step, on lattices with different sizes and at 3 values tuned in a way to keep the temperature fixed,
exhibits the same behavior, thus indicating continuum scaling. Afterwards, the lattice size was
fixed to 40° x 10 and, by varying the coupling f8 in the range [6.050 — 6.325], the effect on the flux
tube of a growing temperature was studied. The results of our analysis are shown in Fig. 3 (Right).
To check to what extent the dual superconductor scenario is confirmed by our numerical results, the
behavior vs temperature of London penetration depth and coherence length was analyzed. Results
are shown in Fig. 4. We observe that, while the intensity of the measured chromoelectric field has
a substantial drop at T, the penetration length A decreases monotonically across the transition (but
from bigger values than what we observed at T = 0), while & stays approximately constant (even
though at a much smaller value than at 7 = 0). According to our numerical findings, flux tubes
are somehow “evaporating® in a way that is not consistent with the dual superconductor analogy.
In ordinary superconductivity, indeed, both A and & diverge while T is approached. Nevertheless,
flux tubes do survive across the deconfinement transition temperature and the field shape is well
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Figure 4: (Left) London penetration depth A vs T /T, (the Az—o = 0.1750(63) value is included).
(Right) Coherence length & vs T /T, (the Er—o = 0.983(121) value is included).

fitted by the ansatz derived within the dual superconductivity picture, even beyond 7.

4. Flux tubes across the deconfinement transition in the magnetic sector

In the high-temperature regime, through dimensional reduction, QCD can be reformulated as
an effective three-dimensional theory with the scale of the effective couplings given in terms of the
temperature [8]. However, straightforward perturbation theory fails in the effective theory, even
at high-7', due to the presence of infrared nonperturbative effects which manifest themselves in
correlation functions for the spatial components of gauge fields. It is, indeed, known that the spatial
Wilson loops obey an area law behavior, with spatial string tension oy, also in the high-T phase [9].
An analysis of the temperature dependence of o; thus yields information on the importance of the
nonstatic sector for long-distance properties of high-7" QCD. For T > 27, the spatial string tension
satisfies:

Vo, = 7g(T) T, @.1)

where g(T') is the temperature dependent coupling constant, running according to the two-loop
B-function, and v is a constant; y = 0.586 £ 0.045 for SU(3) [9]. In view of this, and for a better
understanding of the nonperturbative structure of QCD at high-T', a quantitative description of the
properties of the spatial string tension is needed and the study of the Wilson connected correlator,
lying in the spatial sublattice, at nonzero temperature provides us with an indirect measurement of
0;. Our results for the longitudinal chromomagnetic field vs x; are shown in Fig. 5 and the evidence
is that our data are well fitted by Eq. (1.5) at all temperatures and the field shape changes with T in
a way consistent with a growing spatial string.
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Figure 5: B; (x;) across the deconfinement transition, as determined from py?"" built in the spatial
sublattice. The solid lines are the fit of our data to Eq. (1.5).
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