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1. Introduction

In 1966, Yoichiro NambuT] first proposed the SU(3) gauge theory, i.e., quantum chromody-
namics (QCD), as a field theory of quarks, just after the introduction of the color quantum number
[2]. In 1973, the asymptotic freedom of QCD was theoretically shd@@ngnd QCD was estab-
lished as the fundamental theory of the strong interaction. While perturbative QCD works well at
high energies, infrared QCD exhibits strong-coupling nature and various nonperturbative phenom-
ena such as dynamical chiral-symmetry breakfigahd color confinemenfg].

Among the nonperturbative properties of QCD, color confinement is one of the most diffi-
cult important subjects. The difficulty is considered to originate from non-Abelian dynamics and
nonperturbative features of QCD, which are largely different from QED. However, it is not clear
whether quark confinement is peculiar to the non-Abelian nature of QCD or not.

On the quark confinement in hadronsﬁ@ystems have been well investigated in lattice QCD
[6], but the quark interaction in baryonic three-quark (3Q) systé&fy{8][has not been studied so
much. Note however that the nucleon is one of the main ingredients of the matter in our real world,
and therefore the quark confinement in baryons would be fairly important. Furthermore, the three-
body force among three quarks is a “primary” force reflecting the SU(3) gauge symmetry in QCD
[[@, while the three-body force appears as a residual interaction in most fields of physics.

In this paper, we accurately measure the static 3Q potential and quark confinement in baryons
in SU(3) quenched lattice QCD with 1000-2000 gauge configurat@hsIp parallel, we also
investigate Abelian projection of quark confinement for bot &nd 3Q system§@ [1J].

2. Dual Superconductor Picture and Maximally Abelian projection

In 1970’s, Nambu, 't Hooft and Mandelstam proposed a dual-superconductor theory for quark
confinement[. In this theory, the QCD vacuum is identified as a color-magnetic monopole
condensed system, and there occurs one-dimensional squeezing of the color-electric flux among
(anti)quarks by the dual Meissner effect, which leads to the string pi@dfef hadrons.

However, there are two large gaps between QCD and the dual-superconductor @fture [

1. The dual-superconductor picture is based on the Abelian gauge theory subject to the Maxwell-
type equations, while QCD is a non-Abelian gauge theory.

2. The dual-superconductor picture requires color-magnetic monopole condensation as the key
concept, while QCD does not have such a monopole as the elementary degrees of freedom.

As a connection between the dual superconductor and QCD, 't Hooft proposed “Abelian projection”
[I3 14, which accompanies topological appearance of magnetic monopoles. 't Hooft also conjec-
tured that long-distance physics such as confinement is realized only by Abelian degrees of freedom
in QCD [13], which is called “(infrared) Abelian dominance”. Actually, in the maximally Abelian
(MA) gauge [[9], infrared QCD becomes Abelian-lik&{ as a result of a large off-diagonal gluon
mass of about 1GeVA[]], and also there appears a large clustering of the monopole-current network
in the QCD vacuunfI3 [1§. In fact, by taking the MA gauge, infrared QCD seems to resemble an
Abelian dual-superconductor system. In the MA gauge, Abelian dominance of quark confinement
has been investigated mainly foQ@ystems in SU(2) and SU(3) lattice QCIF I3, 27].
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Lattice QCD is described with the link varialdlg, (s) = €294(9 (a: lattice spacingg: gauge
coupling,Ay: gluon fields), and SU(3) MA gauge fixinﬂﬂl'_(]] is performed by maximizing

4 3
RunlUu(9 = 3 3 (Uj(9AUL(9A) = 5 3 5 <_zlu,1<s>n|2—1), @)
S U= 1=

S u=1
under the SU(3) gauge transformation. In our calculation, we numerically maxRgizeausing
the over-relaxation metho[lI0, [I9). The converged value dRua)/(4V) € [—3,1] (V: lattice
volume) is, €.9.0.70726) at 3 = 5.8 and0.73225) at 3 = 6.0, and the maximized value &va
is almost the same over 1000-2000 gauge configurations. Then, our procedure seems to escape bad
local minima, wherdRya is relatively small, so that the Gribov copy effect would not be significant.
The Abelian link variablai, (s) = €% (T8 ¢ U(1)2 is extracted from the link variable

U (s) € SU(3) in the MA gauge, by maximizinBapel = 1Retr(U MA (s )uL(s)) €[-31M.

3. The quark-antiquark potential and perfect Abelian dominance of confinement

First, we investigate the@potentiaIV(r) in SU(3) quenched lattice QCD dr? x Ly, with
(B,L3L) = (6.4,32%),(6.0,32%) and (5.8,16°32) [IT. The static @ potentialV(r) is obtained
from the Wilson loop[@], and its MA projection (Abelian parfyapel(r) is similarly defined as

V() =~ im TNl Vael(r) = — im TIn(Wlu e (3.)
(We also define the off-diagonal pa#; (r), and numerically find/ (r) ~ Vapel(r) + Vort (r) [1J.)

We show in Fig. 1 the lattice QCD result of th&€@otentiaV (r) and its Abelian paiapei(r).

They are found to be well reproduced by the Coulomb-plus-linear ansatz, respectively:

AAbe' + Onpel I + Cabel- (3.2)

A
V(r):——+ar+C, Vapel(r) = —

Remarkably, we find “perfect Abelian dominance” of the string tensimge ~ T, on these lattices.
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Figure 1: (a) Cartan decomposition of the stati@@otential\/(r) (circles) into the Abelian pakapei(r)
(squares) and the off-diagonal p&f(r) (triangles) on 32 at B = 6.4 (filled) and 60 (open). For each
potential, the best-fit Coulomb-plus-linear curve is added. (b) Fit analy&igrof— Vapel(r) at =6.4, 6.0
and 5.8. At eaclf, all the data can be well fit with the pure Coulomb form watk= 0. (c) The demonstration
of V(r) ~ Vapel(r) + Vort (1) at B = 6.0 (upper) and 8t (lower). All the figures are taken from RdL{.

We also examine the physical lattice-volume dependenocrgf/ o in Fig. 2. Perfect Abelian
dominance @apel/ 0 ~ 1) seems to be realized when the spatial fiaés larger than abou fm.
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Figure 2: Physical spatial-size dependence of the ratige|/ 0 of the (ﬁ string tension and the Abelian
one, taken from Ref@. (For 8 = 5.8 and 60, both statistics and number of data in RE}.4re larger than
those in Ref.[[J.) Perfect Abelian dominanc@fye/ 0 ~ 1) is found for larger lattices witha > 2 fm.

4. The baryonic three-quark potential

In this section, we perform the accurate calculation of the baryonic three-quark (3Q) potential
V3q in SU(3) quenched lattice QCD with the standard plaquette action on the two Id8jces [

) B=5.80n16°x32 [i.e.,a=0.1482) fm, the spatial voluméLa)® = (2.37(3) fm)?],

i) B=6.00n20%x 32, [i.e.,a=0.10225) fm, the spatial volumé¢La)® = (2.05(1) fm)3].
The lattice spacing is determined from the string tensian= 0.89 GeV/fm in the @ potential.
For 3=5.8 and 6.0, we us2000and 1000 gauge configurations, respectively, which are taken
every500 sweeps after a thermalization 20000sweeps. The jackknife method is used for the

error estimate.
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Figure 3: (a) The flux-tube configuration of the three-quark system with the minimal value of the total flux-
tube lengthlmin. re is the Fermat point. (b) The trajectory of the 3Q Wilson Iati,. (c) The location of
the static three-quark sources in our lattice QCD calculation. These figures are taken fr@h Ref.[

Similar to the case of the @potentiaIV(r), the color-singlet baryonic 3Q potentiig can
be calculated from the 3Q Wilson lodkq as [7,[8]

1 1
Vag=— lim ZIn(Wsq [Uu]), Wag[Uu] = Eabcfartye XX XD XSC (4.1)
Tow T 3! ol

Here, X« = [r, Uu(s) is the path-ordered product of the link variables along the Path Fig. 3(b).
We put three quarks ofi, 0,0), (0, j,0) and(0,0,k) in R®with 1 <i < j <k < L/2in lattice units,
as shown in Fig. 3(c), and deal with 101 and 211 different patterns of 3Q systgfad & and
6.0, respectively, based on well-converged daté/éfy). For the accurate calculation of the 3Q
potential with finiteT, we apply the gauge-invariant smearing metHddg], which enhances the
ground-state component in the 3Q statéWag).



The three-quark potential and perfect Abelian dominance in SU(3) lattice QCD Hideo Suganuma

Table 1: Fit analysis of inter-quark potentials in lattice unitg3at 5.8 on 16 x 32 andB = 6.0 on 26 x 32.
No is the number of different patterns ofQQor 3Q systems. For the@potenual\/ and the Abelian part
VAPel we list the best-fit parameter s@t,A) of the Coulomb-plus-linear ansatz. For the 3Q poteivial
and the Abelian paNlAbe' we list the best-fit parameter Setzq, Azg) of the Y-ansatz. “3Q(equi.)” means
the fit only for equnateral triangle 3Q systems. The string tension m‘tRﬁ'/a is also listed. (See Ref.[9].)
B NQ o A O-Abel AAbeI o-Abel/o-
5.8 QQbar 26 0.099(2) 0.30(3) 0.098(2) 0.043(12) 0.99(3)
3Q (equi.) 5 0.097(2) 0.118(3) 0.098(3) —0.001(8) 1.01(3)
3Q 101 0.0997(4) 0.109(1) 0.0967(5) 0.006(2) 0.97(1)
6.0 QQbar 39 0.0472(6) 0.289(10) 0.0457(2) 0.050(3) 0.97(2)
3Q (equi.) 8 0.0471(10) 0.121(3) 0.0455(12) 0.014(4) 0.97(3)
3Q 211 0.0480(3) 0.113(2) 0.0456(2) 0.013(12) 0.95(1)

As the result, we find that the 3Q potenhah is fairly well reproduced by the Y-ansafz [g],
i.e., one-gluon-exchange Coulomb plus Y-type linear potential,
AsQ

+ 030Lmin+Caq = &+ 030Lmin + C3q. (4.2)

Vaq(r,ra,rs) = — 5

i<] |I‘,

for all the distances of the 3Q systeridd§,[@. Here,r1,r, andr 3 denote the three-quark positions,
andLpmin is the minimum flux-tube length connecting the three quarks, as shown in Fig. 3(a). Here,
we have introduced a convenient variabf®R = y;_; 1/|ri —rj|.

Table 1 is a summary of the fit analysis for the 3Q poteMiglwith the Y-ansatz and the@
potentialV with Eq.B3:2) in SU(3) lattice QCD aB =5.80n16° x 32andf = 6.0 on 20° x 32[[.

As shown in Fig.3(a), the functional forrd.Q) indicates the Y-shaped flux-tube formation
in baryons. Actually, the Y-shaped flux-tube formation has been observed in the lattice QCD
calculations on the action density in the presence of static three qZ&} .

5. Perfect Abelian dominance of quark confinement in baryons

In this section, we investigate Abelian dominance of quark confinement in the 3Q system.
Similarly to the @ case, the MA-projected 3Q potentmgg’e' (Abelian part) can be calculated
from the Abelian 3Q Wilson loofsg [uy] in the MA gauge:

.1
VS = im T in (Wag [uy]) 5.)

which is invariant under the residual Abelian gauge transformation.
Figure 4 shows the 3Q potentidg and its Abelian pal’t/:fé’e' plotted againstmin in SU(3)
lattice QCD a3=5.8 on16° x 32[@]. For comparison, we show in Fig.4(a) th&@@otentialV (r)
and its Abelian pai/A"®!(r), indicating perfect Abelian dominance of the string tension in mesons.
We note that the Abelian dominance of thé@onfinement force does not necessarily mean
that of the 3Q confinement force, because one cannot superpose solutions in QCD even at the
classical level. Indeed, any 3Q system cannot be described by the superposition of the interaction
between two quarks, as is suggested from the functional fdrB ¢f the 3Q potential], §].
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Figure 4: (a) The (;6 potentiaV (r) and its Abelian parvA°¢!(r). (b) The 3Q potentia¥zq (black) and its
Abelian part\/sAQbe' (blue) in SU(3) lattice QCD aB=5.8 on 16 x 32. For a rough indication, we add the
best-fit Y-ansatz curve of the equilateral 3Q casevieyandV;$®!, respectively.osq anda5® correspond
to the slopes of the parallel lines. (c) Fit analysiS/@@—V?,A(ge'. The dashed curve is the pure Coulomb
ansatz[§.3 with no string tension. (b) and (c) indicateg ~ a§ge'. These figures are taken from RE}.[

We find that the Abelian pasj$® of the 3Q potential also takes the Y-ans@@l [

AeAbeI
Vi = 2 + 088 Lo +C58°" (5.2)

with 1/R= y;_;1/|ri —r}|. Figure 4(b) shows the 3Q potentia, and its Abelian pai45® plot-
ted against the total flux-tube lengthyin. When the size of the 3Q systelnyin/3, is larger than
0.3 fm, Vaq is given by a Y-type linear potentiadizglmin + Cag (upper straight line in Fig.4(b)).
Remarkably, the Abelian pau”"®!(r) obeysasqlmin +C55° (lower straight line in Fig.4(b)) at
large distances, which meaags®' ~ o3q.

To demonstratejé*ge' ~ 03q conclusively, we investigate the differenisq betweenVzg
andvfé’e', as shown in Fig.4(cfg. If the Abelian dominance of the 3Q potential is exact, i.e.,
08% = 030, AVaq is well reproduced by the pure Coulomb ansatz,

AA
DVag = Vag— VAE® = — FSQ +ACao, (5.3)

whereAAzg = Agg— Aége' andACzo = Caq— CQge'. In Fig.4(c),AVsq obeys a pure Coulomb form

with no string tension, which is a clear evidence on the equivalenoégﬂ = 030, With accuracy

within a few percent deviation, i.e., perfect Abelian dominance of quark confinement in baryons.
In Table 1, we summarize all the fit results ffr), VA°®!(r), Vaq andV45®' on both lattices

at =5.80n16°x 32_andB = 6.00n20% x 32[@. Thus, we find perfect Abelian dominance for

the string tension of Q and 3Q potentialsog ~ aé(%e' ~ 03~ 048°.

6. Summary and concluding remarks

We have studied the baryonic 3Q potential in SU(3) quenched lattice QCDBwittb.8 on
16° x 32andp = 6.0 on 20° x 32 for more than 300 different patterns of 3Q systems in total, using
1000-2000 gauge configurations. For all the distances, we have found that the 3Q potential is fairly
well described by the Y-ansatz, i.e., one-gluon-exchange Coulomb plus Y-type linear pd@ntial |
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We have also investigated MA projection of quark confinement in both mesons and baryons,
and have found perfect Abelian dominance of the string tensigg,~ aAge' ~ O3q =~ 03',“(5’9', in
QQ and 3Q potential§g, [IJ]. Thus, in spite of the non-Abelian nature of QCD, quark confinement
in hadrons is entirely and universally kept in the Abelian sector of QCD in the MA gauge.
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