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We study the static three-quark (3Q) potential for more than 300 different patterns of 3Q systems

with high statistics, i.e., 1000-2000 gauge configurations, in SU(3) lattice QCD at the quenched

level. For all the distances, the 3Q potential is found to be well described by the Y-ansatz, i.e.,

one-gluon-exchange (OGE) Coulomb plus Y-type linear potential. Also, we investigate Abelian

projection of quark confinement in the context of the dual superconductor picture proposed by

Yoichiro Nambuet al. in SU(3) lattice QCD. Remarkably, quark confinement forces in both QQ̄

and 3Q systems can be described only with Abelian variables in the maximally Abelian gauge, i.e.,

σQQ̄ ≃ σAbel
QQ̄ ≃ σ3Q ≃ σAbel

3Q , which we call “perfect Abelian dominance” of quark confinement.
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1. Introduction

In 1966, Yoichiro Nambu [1] first proposed the SU(3) gauge theory, i.e., quantum chromody-
namics (QCD), as a field theory of quarks, just after the introduction of the color quantum number
[2]. In 1973, the asymptotic freedom of QCD was theoretically shown [3], and QCD was estab-
lished as the fundamental theory of the strong interaction. While perturbative QCD works well at
high energies, infrared QCD exhibits strong-coupling nature and various nonperturbative phenom-
ena such as dynamical chiral-symmetry breaking [4] and color confinement [5].

Among the nonperturbative properties of QCD, color confinement is one of the most diffi-
cult important subjects. The difficulty is considered to originate from non-Abelian dynamics and
nonperturbative features of QCD, which are largely different from QED. However, it is not clear
whether quark confinement is peculiar to the non-Abelian nature of QCD or not.

On the quark confinement in hadrons, QQ̄ systems have been well investigated in lattice QCD
[6], but the quark interaction in baryonic three-quark (3Q) systems [7, 8] has not been studied so
much. Note however that the nucleon is one of the main ingredients of the matter in our real world,
and therefore the quark confinement in baryons would be fairly important. Furthermore, the three-
body force among three quarks is a “primary” force reflecting the SU(3) gauge symmetry in QCD
[7], while the three-body force appears as a residual interaction in most fields of physics.

In this paper, we accurately measure the static 3Q potential and quark confinement in baryons
in SU(3) quenched lattice QCD with 1000-2000 gauge configurations [9]. In parallel, we also
investigate Abelian projection of quark confinement for both QQ̄ and 3Q systems [9, 10].

2. Dual Superconductor Picture and Maximally Abelian projection

In 1970’s, Nambu, ’t Hooft and Mandelstam proposed a dual-superconductor theory for quark
confinement [5]. In this theory, the QCD vacuum is identified as a color-magnetic monopole
condensed system, and there occurs one-dimensional squeezing of the color-electric flux among
(anti)quarks by the dual Meissner effect, which leads to the string picture [11] of hadrons.

However, there are two large gaps between QCD and the dual-superconductor picture [12].

1. The dual-superconductor picture is based on the Abelian gauge theory subject to the Maxwell-
type equations, while QCD is a non-Abelian gauge theory.

2. The dual-superconductor picture requires color-magnetic monopole condensation as the key
concept, while QCD does not have such a monopole as the elementary degrees of freedom.

As a connection between the dual superconductor and QCD, ’t Hooft proposed “Abelian projection”
[13, 14], which accompanies topological appearance of magnetic monopoles. ’t Hooft also conjec-
tured that long-distance physics such as confinement is realized only by Abelian degrees of freedom
in QCD [13], which is called “(infrared) Abelian dominance”. Actually, in the maximally Abelian
(MA) gauge [15], infrared QCD becomes Abelian-like [16] as a result of a large off-diagonal gluon
mass of about 1GeV [17], and also there appears a large clustering of the monopole-current network
in the QCD vacuum [15, 18]. In fact, by taking the MA gauge, infrared QCD seems to resemble an
Abelian dual-superconductor system. In the MA gauge, Abelian dominance of quark confinement
has been investigated mainly for Q̄Q systems in SU(2) and SU(3) lattice QCD [16, 19, 20].
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Lattice QCD is described with the link variableUµ(s) = eiagAµ (s) (a: lattice spacing,g: gauge
coupling,Aµ : gluon fields), and SU(3) MA gauge fixing [9, 10] is performed by maximizing

RMA [Uµ(s)]≡ ∑
s

4

∑
µ=1

tr
(
U†

µ(s)H⃗Uµ(s)H⃗
)
=

1
2 ∑

s

4

∑
µ=1

(
3

∑
i=1

|Uµ(s)ii |2−1

)
, (2.1)

under the SU(3) gauge transformation. In our calculation, we numerically maximizeRMA using
the over-relaxation method [9, 10, 19]. The converged value of⟨RMA ⟩/(4V) ∈ [−1

2,1] (V: lattice
volume) is, e.g.,0.7072(6) at β = 5.8 and0.7322(5) at β = 6.0, and the maximized value ofRMA

is almost the same over 1000-2000 gauge configurations. Then, our procedure seems to escape bad
local minima, whereRMA is relatively small, so that the Gribov copy effect would not be significant.

The Abelian link variableuµ(s) = eiθ 3
µ (s)T3+iθ 8

µ (s)T8 ∈ U(1)2 is extracted from the link variable

UMA
µ (s) ∈ SU(3) in the MA gauge, by maximizingRAbel ≡ 1

3Retr
(
UMA

µ (s)u†
µ(s)

)
∈ [−1

2,1] [9].

3. The quark-antiquark potential and perfect Abelian dominance of confinement

First, we investigate the Q̄Q potentialV(r) in SU(3) quenched lattice QCD onL3×Lt , with
(β ,L3Lt) = (6.4,324),(6.0,324) and(5.8,16332) [10]. The static Q̄Q potentialV(r) is obtained
from the Wilson loop [6], and its MA projection (Abelian part)VAbel(r) is similarly defined as

V(r) =− lim
t→∞

1
t
ln⟨W[Uµ ]⟩r×t , VAbel(r) =− lim

t→∞

1
t
ln⟨W[uµ ]⟩r×t . (3.1)

(We also define the off-diagonal partVoff(r), and numerically findV(r)≃VAbel(r)+Voff(r) [10].)
We show in Fig. 1 the lattice QCD result of the Q̄Q potentialV(r) and its Abelian partVAbel(r).

They are found to be well reproduced by the Coulomb-plus-linear ansatz, respectively:

V(r) =−A
r
+σ r +C, VAbel(r) =−AAbel

r
+σAbel r +CAbel. (3.2)

Remarkably, we find “perfect Abelian dominance” of the string tension,σAbel≃σ , on these lattices.

(a) Cartan decomposition of QQ̄ potensial (b) perfect Abelian dominance (c) summation formula: V ≃ VAbel + Voff
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Figure 1: (a) Cartan decomposition of the static QQ̄ potentialV(r) (circles) into the Abelian partVAbel(r)
(squares) and the off-diagonal partVoff(r) (triangles) on 324 at β = 6.4 (filled) and 6.0 (open). For each
potential, the best-fit Coulomb-plus-linear curve is added. (b) Fit analysis ofV(r)−VAbel(r) at β=6.4, 6.0
and 5.8. At eachβ , all the data can be well fit with the pure Coulomb form withσ = 0. (c) The demonstration
of V(r)≃VAbel(r)+Voff(r) at β = 6.0 (upper) and 6.4 (lower). All the figures are taken from Ref. [10].

We also examine the physical lattice-volume dependence ofσAbel/σ in Fig. 2. Perfect Abelian
dominance (σAbel/σ ≃ 1) seems to be realized when the spatial sizeLa is larger than about2 fm.
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Figure 2: Physical spatial-size dependence of the ratioσAbel/σ of the QQ̄ string tension and the Abelian
one, taken from Ref. [9]. (For β = 5.8 and 6.0, both statistics and number of data in Ref. [9] are larger than
those in Ref. [10].) Perfect Abelian dominance (σAbel/σ ≃ 1) is found for larger lattices withLa≥ 2 fm.

4. The baryonic three-quark potential

In this section, we perform the accurate calculation of the baryonic three-quark (3Q) potential
V3Q in SU(3) quenched lattice QCD with the standard plaquette action on the two lattices [9]:

i) β = 5.8 on163×32, [i.e.,a= 0.148(2) fm, the spatial volume(La)3 = (2.37(3) fm)3],
ii) β = 6.0 on203×32, [i.e.,a= 0.1022(5) fm, the spatial volume(La)3 = (2.05(1) fm)3].

The lattice spacinga is determined from the string tensionσ = 0.89 GeV/fm in the Q̄Q potential.
For β=5.8 and 6.0, we use2000 and 1000 gauge configurations, respectively, which are taken
every500 sweeps after a thermalization of20000sweeps. The jackknife method is used for the
error estimate.
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Figure 3: (a) The flux-tube configuration of the three-quark system with the minimal value of the total flux-
tube length,Lmin. rF is the Fermat point. (b) The trajectory of the 3Q Wilson loopW3Q. (c) The location of
the static three-quark sources in our lattice QCD calculation. These figures are taken from Ref.[9].

Similar to the case of the Q̄Q potentialV(r), the color-singlet baryonic 3Q potentialV3Q can
be calculated from the 3Q Wilson loopW3Q as [7, 8]

V3Q =− lim
T→∞

1
T

ln
⟨
W3Q

[
Uµ
]⟩
, W3Q

[
Uµ
]
≡ 1

3! ∑
a,b,c

∑
a′b′c′

εabcεa′b′c′X
aa′
1 Xbb′

2 Xcc′
3 . (4.1)

Here,Xk ≡∏Γk
Uµ(s) is the path-ordered product of the link variables along the pathΓk in Fig. 3(b).

We put three quarks on(i,0,0), (0, j,0) and(0,0,k) in R3 with 1≤ i ≤ j ≤ k≤ L/2 in lattice units,
as shown in Fig. 3(c), and deal with 101 and 211 different patterns of 3Q systems atβ=5.8 and
6.0, respectively, based on well-converged data of⟨W3Q⟩. For the accurate calculation of the 3Q
potential with finiteT, we apply the gauge-invariant smearing method [7, 8], which enhances the
ground-state component in the 3Q state in⟨W3Q⟩.
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Table 1: Fit analysis of inter-quark potentials in lattice units atβ = 5.8 on 163×32 andβ = 6.0 on 203×32.
NQ is the number of different patterns of Q̄Q or 3Q systems. For the Q̄Q potentialV and the Abelian part
VAbel, we list the best-fit parameter set(σ ,A) of the Coulomb-plus-linear ansatz. For the 3Q potentialV3Q

and the Abelian partVAbel
3Q , we list the best-fit parameter set(σ3Q,A3Q) of the Y-ansatz. “3Q(equi.)” means

the fit only for equilateral-triangle 3Q systems. The string tension ratioσAbel/σ is also listed. (See Ref.[9].)

β NQ σ A σAbel AAbel σAbel/σ
5.8 QQbar 26 0.099(2) 0.30(3) 0.098(1) 0.043(12) 0.99(3)

3Q (equi.) 5 0.097(1) 0.118(3) 0.098(3) −0.001(8) 1.01(3)
3Q 101 0.0997(4) 0.109(1) 0.0967(5) 0.006(2) 0.97(1)

6.0 QQbar 39 0.0472(6) 0.289(10) 0.0457(2) 0.050(3) 0.97(1)
3Q (equi.) 8 0.0471(10) 0.121(3) 0.0455(12) 0.014(4) 0.97(3)

3Q 211 0.0480(3) 0.113(1) 0.0456(2) 0.013(1) 0.95(1)

As the result, we find that the 3Q potentialV3Q is fairly well reproduced by the Y-ansatz [7, 8],
i.e., one-gluon-exchange Coulomb plus Y-type linear potential,

V3Q(r1, r2, r3) = −∑
i< j

A3Q

|r i − r j |
+σ3QLmin+C3Q =−A3Q

R
+σ3QLmin+C3Q, (4.2)

for all the distances of the 3Q systems [7, 8, 9]. Here,r1, r2 andr3 denote the three-quark positions,
andLmin is the minimum flux-tube length connecting the three quarks, as shown in Fig. 3(a). Here,
we have introduced a convenient variable1/R≡ ∑i< j 1/|r i − r j |.

Table 1 is a summary of the fit analysis for the 3Q potentialV3Q with the Y-ansatz and the Q̄Q
potentialV with Eq.(3.2) in SU(3) lattice QCD atβ = 5.8 on163×32andβ = 6.0 on203×32[9].

As shown in Fig.3(a), the functional form (4.2) indicates the Y-shaped flux-tube formation
in baryons. Actually, the Y-shaped flux-tube formation has been observed in the lattice QCD
calculations on the action density in the presence of static three quarks [20, 21].

5. Perfect Abelian dominance of quark confinement in baryons

In this section, we investigate Abelian dominance of quark confinement in the 3Q system.
Similarly to the Q̄Q case, the MA-projected 3Q potentialVAbel

3Q (Abelian part) can be calculated
from the Abelian 3Q Wilson loopW3Q

[
uµ
]

in the MA gauge:

VAbel
3Q =− lim

T→∞

1
T

ln
⟨
W3Q

[
uµ
]⟩
, (5.1)

which is invariant under the residual Abelian gauge transformation.
Figure 4 shows the 3Q potentialV3Q and its Abelian partVAbel

3Q plotted againstLmin in SU(3)
lattice QCD atβ=5.8 on163×32 [9]. For comparison, we show in Fig.4(a) the QQ̄ potentialV(r)
and its Abelian partVAbel(r), indicating perfect Abelian dominance of the string tension in mesons.

We note that the Abelian dominance of the QQ̄ confinement force does not necessarily mean
that of the 3Q confinement force, because one cannot superpose solutions in QCD even at the
classical level. Indeed, any 3Q system cannot be described by the superposition of the interaction
between two quarks, as is suggested from the functional form (4.2) of the 3Q potential [7, 8].
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Figure 4: (a) The Q̄Q potentialV(r) and its Abelian partVAbel(r). (b) The 3Q potentialV3Q (black) and its
Abelian partVAbel

3Q (blue) in SU(3) lattice QCD atβ=5.8 on 163×32. For a rough indication, we add the
best-fit Y-ansatz curve of the equilateral 3Q case forV3Q andVAbel

3Q , respectively.σ3Q andσAbel
3Q correspond

to the slopes of the parallel lines. (c) Fit analysis ofV3Q−VAbel
3Q . The dashed curve is the pure Coulomb

ansatz (5.3) with no string tension. (b) and (c) indicateσ3Q ≃ σAbel
3Q . These figures are taken from Ref.[9].

We find that the Abelian partVAbel
3Q of the 3Q potential also takes the Y-ansatz [9],

VAbel
3Q =−

AAbel
3Q

R
+σAbel

3Q Lmin+CAbel
3Q , (5.2)

with 1/R≡ ∑i< j 1/|r i − r j |. Figure 4(b) shows the 3Q potentialV3Q and its Abelian partVAbel
3Q plot-

ted against the total flux-tube length,Lmin. When the size of the 3Q system,Lmin/3, is larger than
0.3 fm, V3Q is given by a Y-type linear potential,σ3QLmin+C3Q (upper straight line in Fig.4(b)).
Remarkably, the Abelian partVAbel(r) obeysσ3QLmin+CAbel

3Q (lower straight line in Fig.4(b)) at
large distances, which meansσAbel

3Q ≃ σ3Q.
To demonstrateσAbel

3Q ≃ σ3Q conclusively, we investigate the difference∆V3Q betweenV3Q

andVAbel
3Q , as shown in Fig.4(c) [9]. If the Abelian dominance of the 3Q potential is exact, i.e.,

σAbel
3Q = σ3Q, ∆V3Q is well reproduced by the pure Coulomb ansatz,

∆V3Q ≡V3Q−VAbel
3Q =−∆A3Q

R
+∆C3Q, (5.3)

where∆A3Q≡ A3Q−AAbel
3Q and∆C3Q≡C3Q−CAbel

3Q . In Fig.4(c),∆V3Q obeys a pure Coulomb form
with no string tension, which is a clear evidence on the equivalence ofσAbel

3Q = σ3Q, with accuracy
within a few percent deviation, i.e., perfect Abelian dominance of quark confinement in baryons.

In Table 1, we summarize all the fit results forV(r), VAbel(r), V3Q andVAbel
3Q on both lattices

at β = 5.8 on 163×32 andβ = 6.0 on 203×32 [9]. Thus, we find perfect Abelian dominance for
the string tension of Q̄Q and 3Q potentials:σQQ̄ ≃ σAbel

QQ̄ ≃ σ3Q ≃ σAbel
3Q .

6. Summary and concluding remarks

We have studied the baryonic 3Q potential in SU(3) quenched lattice QCD withβ = 5.8 on
163×32andβ = 6.0 on203×32for more than 300 different patterns of 3Q systems in total, using
1000-2000 gauge configurations. For all the distances, we have found that the 3Q potential is fairly
well described by the Y-ansatz, i.e., one-gluon-exchange Coulomb plus Y-type linear potential [9].
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We have also investigated MA projection of quark confinement in both mesons and baryons,
and have found perfect Abelian dominance of the string tension,σQQ̄ ≃ σAbel

QQ̄ ≃ σ3Q ≃ σAbel
3Q , in

QQ̄ and 3Q potentials [9, 10]. Thus, in spite of the non-Abelian nature of QCD, quark confinement
in hadrons is entirely and universally kept in the Abelian sector of QCD in the MA gauge.
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