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1. Introduction

The static three-quark potential in QCD is expected to play an important role not only in
heavy baryon spectroscopy but also in clarifying the confining structure of the three-quark system.
Lattice QCD simulations offer nonperturbative computation of the interquark potential, and the
three-quark potential has been computed so far by several groups [1, 2, 3, 4, 5, 6, 7]. However, the
determination of the functional form of the potential is not straightforward compared to that of the
quark-antiquark potential, since the functional form is of course dependent on how the color flux
tube is formed among the three quarks, which is not known a priori due to nonperturbative nature
of the QCD vacuum.

Two types of the functional form deduced from the ∆-shaped and the Y -shaped flux-tube pic-
tures have mainly been tested in earlier studies, where the three quarks are assumed to be located
at the edge of these characters. The functional form of the potential of these two descriptions is
unfortunately not so different with each other in practice, so that the precise lattice data with less
statistical and systematic errors are clearly required before evaluating the goodness of the func-
tional form. In all the previous studies, the three-quark Wilson loop as schematically shown in
Fig. 1 (left) is computed, which is a natural extension of the ordinary rectangular Wilson loop for
the quark-antiquark system. However, the later study on the flux-tube profile in the three-quark
system with the three-quark Wilson loop shows that the profile can be affected by the shape of the
spatial Wilson lines [8]. The numerical procedure for computing the potential and the profile is
not exactly the same, but it is certainly preferable to obtain the potential data from the three-quark
sources without the spatial Wilson lines if the functional form is of interest.

In this work we compute the three-quark potential of various quark configurations from the
Polyakov loop correlation function (PLCF) at zero temperature. Our result is free from the sys-
tematic effect due to the spatial Wilson lines, since the PLCF is consisted only of the time-like
Polyakov loops as illustrated in Fig. 1 (right). A problem may be the smallness of the expectation
value of the PLCF at long distances at zero temperature, which means that the ordinary simulations
are ineffective as the signal is easily obscured by the statistical noise. This problem can, however,
be solved by employing the multilevel algorithm [9]. Remarkably, we find that this algorithm also
allows us to compute the PLCF only from one gauge configuration by tuning the simulation pa-
rameters [10]. We investigate O(200) sets of the three-quark configurations of various sizes and
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Figure 1: The three-quark Wilson loop (left) and the Polyakov loop correlation function (PLCF) for the
three-quark system (right).
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geometries, including some extreme cases that the three quarks are put at the vertex of the obtuse
triangle whose maximum inner angle is greater than 120 degrees and are also put in line.

We find that most of the three-quark potential from the triangle configurations that the maxi-
mum inner angle is smaller than 120 degrees can fall into one curve. This result supports a picture
that the flux tube is formed basically so as to minimize the total length of lines connecting the three
quarks. We compare the three-quark potential to the sum of the quark-antiquark potential and find
a systematic deviation, which indicates that the two-body interaction is not enough to describe the
three-quark system.

2. Numerical procedures

We perform simulations of SU(3) lattice gauge theory in four dimensions with the lattice
volume 244, where periodic boundary conditions are imposed in all space-time directions. We
use the standard Wilson gauge action at β = 6.00 and the corresponding lattice spacing is a =

0.093 [fm] [11]. One Monte Carlo update consists of one heatbath, followed by five overrelaxation
steps.

We compute the PLCF composed of three Polyakov loops, TrP(⃗x1)TrP(⃗x2)TrP(⃗x3), where the
spatial location of each Polyakov loop, x⃗1, x⃗2, x⃗3 corresponds to that of a quark. We then put the
three Polyakov loops in three-dimensional space as shown in Fig. 2, where various three-quark
configurations can be classified into four types such that the three quarks are put at the vertices
of the acute, right, obtuse triangles, and are also put in line. Note that the acute triangles contain
regular and isosceles triangles, and the obtuse triangles are further classified into two types by the
maximum inner angles θmax, greater or less than 120 degrees (see Table 1). Based on the law of
cosine, θmax can be written in terms of interquark distance r1 = |⃗x2− x⃗3|, r2 = |⃗x3− x⃗1|, r3 = |⃗x1− x⃗2|
as

cosθmax =
rmax(r2

1 + r2
2 + r2

3 −2r2
max)

2r1r2r3
, (2.1)
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Figure 2: The spatial location of the Polyakov loops, where the three quarks are put at the vertices of the
acute (i), right (ii), obtuse (iii) triangles, and are also put in line (iv).
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classification The number of configurations

acute isosceles (regular) 65 (7) 135

right 43 (of which 87 satisfy rmin > 2a)

obtuse θmax < 120◦ 27 •
θmax ≥ 120◦ 28 (of which 3 satisfy rmin > 2a) ■ 218

line 32 (of which 12 satisfy rmin > 2a) ▲

q-qq (quark-diquark) 23 ♦

Table 1: The classification of the O(200) three-quark configurations investigated in our simulation in terms
of the triangle shape formed by the three quarks, where rmin = min(r1,r2,r3) denotes the minimum in-
terquark distance. The symbols correspond to that used in Fig. 4.

Figure 3: The ∆- (left), Y - (middle) and Λ- (right) shaped flux tubes, where colored circles denote the
quarks. The length of the thick lines in each flux tubes corresponds to the ∆, Y and Λ distances defined in
Eqs. (3.1), (3.2) and (3.3), respectively.

where rmax = max(r1,r2,r3) denotes the maximum interquark distance. The three-quark potential
V3q is then extracted from the expectation value of the PLCF by

V3q(⃗x1, x⃗2, x⃗3) =− 1
T

ln⟨TrP(⃗x1)TrP(⃗x2)TrP(⃗x3)⟩+O(
1
T

e−(∆E)T ) , (2.2)

where the contribution from the excited states O( 1
T e−(∆E)T ) are negligible at zero temperature as

T = 24a is already large enough.
We employ the multilevel algorithm to evaluate the expectation value of the PLCF. The idea

of the algorithm is to compute a desired correlation function, which may have an extremely small
expectation value, from the product of relatively large sublattice averages of its components, where
the sublattices are defined by dividing the lattice volume into several layers along the time direction.
During the computation of the sublattice averages, the spatial links at the sublattice boundaries are
fixed. We denote the number of the sublattice Nsub and the number of internal update for the sub-
lattice average Niupd. A detailed description of the method for the PLCF in the three-quark system
is given in Ref. [10]. We use the same parameter set such as Nsub = 6 and Niupd = 500000 used in
Ref. [10], which enables us to compute the three-quark potential from one gauge configuration.

3. Numerical results

We introduce various distances called ∆, Y , Λ as schematically shown in Fig. 3, which cor-
respond to the length of the possibly-formed flux tubes among the three quarks. By using the
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Figure 4: All data of the three-quark potential listed in Table 1 as a function of the L distance defined in
Eq.(3.4) in units of lattice spacing a. The bigger symbols denote the potential from the configuration for
rmin > 2a, while the smaller symbols for rmin ≤ 2a.

interquark distances r1, r2, r3, these distances are written as

∆ = r1 + r2 + r3 , (3.1)

Y =

√
(r12+ r22+ r32)+

√
3(r1 + r2 + r3)(−r1 + r2 + r3)(r1 − r2 + r3)(r1 + r2 − r3)

2
, (3.2)

Λ = ∆− rmax . (3.3)

We also introduce the minimal total length of the flux tube L, which is given by the Y or the Λ
distance depending on the θmax defined in Eq. (2.1), as

L =

{
Y (θmax < 120◦)
Λ (θmax ≧ 120◦)

. (3.4)

In Fig. 4, we plot all data of the three-quark potential as a function of the L distance. By
fitting the data denoted by big-blue circles (87 points), which belong to the configurations for
rmin = min(r1,r2,r3)> 2a and θmax < 120◦, to the conventional functional form,

Vfit(L) =−A
L
+σL+µ , (3.5)
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Figure 5: A relative deviation of the three-quark potential from the sum of the three quark-antiquark poten-
tial as a function of the ∆ distance (left) and of the θmax (right).

we find that they fall into one curve with the parameters as A3q = 0.68(3), σ3q = 0.0433(3), µ3q =

1.102(6). In this case the L distance is nothing but the Y distance. The potential of the config-
urations for rmin ≤ 2a are not described by the same fitting parameters, which may be due to the
cutoff effect. In Fig. 4, we also plot the quark-diquark potential. By fitting these data to the same
functional form as in Eq.(3.5), we obtain Aq-qq = 0.320(8), σq-qq = 0.0450(4), µq-qq = 1.102(6),
where the data 2a ≤ L ≤ 11a are taken into account (20 points).

We then compare the three-quark potential V3q to the half of the sum of the three quark-
antiquark potentials,

1
2 ∑Vqq̄(∆) =

1
2
(
Vqq̄(r1)+Vqq̄(r2)+Vqq̄(r3)

)
, (3.6)

where we use

Vqq̄(r) =−0.296
r

+0.0463r+0.749 (3.7)

for the quark-antiquark potential, which was obtained from the use of the multilevel algorithm with
the same simulation parameters [12]. In Fig. 5, we plot relative deviation of V3q from 1

2 ∑Vqq̄,
namely (V3q− 1

2 ∑Vqq̄(∆))/V3q, as a function of the ∆ distance and the θmax, respectively. We find a
systematic deviation from the zero line, which tends to increase up to three percent as the ∆ distance
becomes large and the θmax approaches 60 degrees. This means that the sum of the quark-antiquark
potential cannot describe the full behavior of the three-quark potential. On the other hand, the
deviation is less than one percent for the obtuse-triangle configurations with θmax > 120◦ and the
line configurations.

4. Summary

We have computed the static three-quark potential from the PLCF at zero temperature, which
is free from the systematic effect due to the spatial Wilson lines as in the three-quark Wilson
loop. By virtue of the multilevel algorithm, we have obtained clean potential data from one gauge
configuration, where the maximum ∆ distance reaches about 3.3 fm. We have investigated O(200)
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sets of three-quark configurations of various sizes and geometries, where the three quarks are put
at the vertices of the acute, right, obtuse triangles, and are also put in line.

We have tested various functional forms parametrized by the ∆, Y , Λ distances. We have found
that the potential data for rmin > 2a and θmax < 120◦ can fall into one curve with the Y distance.
This result supports a picture that the flux tube is formed basically so as to minimize the total length
of lines connecting the three quarks. In order to find the functional form for the rest of the potential
data, it is quite important to discriminate the short distance effect due to finite lattice spacing.

We have examined systematically whether the three-quark potential can be described by the
sum of the quark-antiquark potential. We have found a systematic deviation especially for acute-
triangle configurations, which tends to increase up to three percent as the ∆ distance increases
and the θmax approaches 60 degrees. This result infers that the force beyond the two-body one
is certainly present, which shows up when the three quarks are extended large enough to form a
junction of the flux tube inside the triangle.
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