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1. Introduction

Modern lattice QCD simulations are making significant advances towards the direct compari-
son with experimental results for a range of hadronic observables. Therefore the numerical simula-
tions will require all uncertainties, both statistical and systematic, to be analysed and addressed. In
this present work, we address the systematic uncertainty associated with excited-state contamina-
tion in baryon matrix elements. Excited-state contamination in baryons is a prime example where
removing such effects is quite problematic, arising as a consequence of a weak signal-to-noise
behaviour limiting us to the use of short source-sink time separations. In accordance with previ-
ous results we show how undertaking a variational approach can significantly reduce excited-state
contamination. However, the strength of the current analysis is that we compare the variational
analysis results with the previously utilised summation and two-exponential fit methods in a quan-
titative and systematic manner. We have considered a variety of nucleon observables, though here
we focus on the nucleon axial vector current g4 as a test case. Looking at g4 we find the variational
method to be superior to the summation and two-exponential fit methods. This proof of concept
can and should be used in any lattice QCD calculation for hadronic observables in the future as the
small cost in computational time greatly improves the robustness and precision of the result.

2. Simulation Details

This study is carried out on a 323 x 64 lattice, with a pion mass of 460 MeV and lattice spacing
of 0.074 fm [1, 2]. This ensemble corresponds to the SU(3)-symmetric point, where m, = m, = my
with ¥ = 0.120900. This simulation uses a clover action comprising of a stout smeared fermion
action along with the tree-level Symanzik improved gluon action. The smeared sources undertaken
in later sections are constructed using a gauge-invariant Gaussian smearing with a choice of o =
0.7. To perform a variational method analysis, the smearing operation was repeated 32, 64 and 128
over both the creation and annihilation operators at a fixed source-sink separation of 13. Then to
undertake a summation and two-exponential analysis, 32 sweeps of smearing was selected for each
source-sink separation of 10, 13, 16, 19 and 22. A value of Z4 ~ 0.85 calculated from [3] for this
ensemble was used to renormalise.

2.1 Two-Point and Three-Point Correlation Functions

Using two- and three-point correlators as per usual, we can construct a ratio of these correlators
which has the large Euclidean time limit:
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where E g‘, and Eg are the source and sink energies, respectively, referring to the state indices o

and 3, with momenta p’ and p (¢ = p’ — p). I is defined as the spin projector and O defined as the
current insertion operator. We define the “FF” function as:
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where /O(qz) is the resulting form factor combination for operator O. To access the axial vector
current g4, I' = YOTH}@}/S and O = Y573 are selected.

2.2 Variational Method (Var)

The variational method has shown to be quite a robust and useful tool for studying two-point
correlators [4, 5, 6, 7, 8, 9]. Recently, this approach has been extended to three-point correlators,
specifically aiming to reduce the effect of excited state contamination in hadronic matrix elements
[10, 11, 12, 13]. The construction of this extension is briefly reviewed here (outline of [13]) re-
sulting in improved two- and three-point correlators for a single state. The two-point correlation
function for state « in the variational approach is given by:

G2 (5.61) = Lo P {T(Q10% (v, 7) 5% (0.5)|Q) } = v (5) (Ga)y; (T o) (5). - 23)
X
Here the optimal interpolators ¢% (x) & ¢ (0) are constructed out of our basis of operators:

=Y VP, 9705 =YLul (HT(0), 24

where J; and ¥; are the creation and annihilation operators with basis index i and v (p) & uf* (p)
provide the linear combination required to isolate state ¢.. The same u & v found for the two-point
correlators can be used to find a three-point correlator with optimal coupling to the state:

G (T;7',1:4,7:0) = v (P') (G3);; (T ', 134, 75 0) u (). 2.5)

The selection of two time values #y and #y + At provides a recurrence relationship for the two-point
correlators. The left and right eigenvectors v* (') and u$ (p) are obtained by solving a generalised
eigenvalue problem and then used to project our matrix of two- and three-point correlators [13].

2.3 Summation Method

As has been used many times in the past and in recent works [14, 15, 16, 17], a summation
method has been suggested to reduce excited state contamination. The process is described by:

t—0t
S(T:0,1;0;0) = Y. R(r;o,r;o,r;o)—>c+z{FF(m—>m,r,0)+ﬁ<eA”")}, 2.6)

=6t

where Am is the energy difference between the ground state mass (m = m®=°) and first excited
state mass (m’' = m*=!). The slope with respect to ¢ then isolates FF (m — m,I",0). We define
Ot as the number of current time values removed from the beginning and end when we sum the R
function. Since the equation holds for any &7, we can use this quantity to test the validity of the
results obtained by this method.
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Figure 1: Effective mass plots over sink time com-  Figure 2: Graph for g4 extracted from the R func-

paring the different smearings and the variational  tion defined in Eq. (2.1). This plot compares in-

method labelled by 7o = 2 Ar = 2. The lines plot-  dividual smearing values to the variational method

ted are the two-exponential fit results described in ~ with a common source-sink separation of 13 lattice

part 2.4. time slices. The lines and shaded errors correspond
to the constant fit values extracted for Figure 6.

2.4 Two-Exponential Method (2exp)

Multi-exponential fits have also been suggested as a way of isolating excited-state contami-
nation. While abandoned long ago in the spectroscopy community, many recent studies have at-
tempted this in hadron matrix element calculations [16, 17, 18, 19]. For comparative purposes, we
also explore the use of a two-exponential fit. The two-point and three-point correlation functions
are parametrised at zero momentum by:

G, (0 z) Ape ™™ 4 Ao mHamt 2.7)

Gs (F;(),z;?), T 0) — Ay {BO +B <e—A"” n e—Am<f—f)) —i—Bge_Amt} . (2.8)

The final fit parameters By, By, B, correspond to:

By=FF (m—m,T,0), B = \/T’”'FF (m—m'T,0), By = %FF (m'—m'.T,0).

" (2.9)
Note that B, in Eq. (2.8) can only be extracted if the fit has access to multiple sink times ¢, as
only varying the current time T cannot distinguish By from B,. Since we have access to multiple
smearings, we can construct a combined fit over smearing-dependent A,, & A,,; with a common m
and Am. The process for the two-exponential fit is to fit the two-point correlator over a sink time
range in which a two-state ansatz provides a reasonable fit. Then we use these extracted parameters
in the fit to the three-point correlator using a 7 range that also allows a two-state ansatz.

3. Results

By looking at the effective mass in Figure 1 we see that the variational method is producing a
correlator similar to the 128 smearing-sweep result, but with reduced excited state contamination.
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Figure 4: Graph for g4 for multiple sink times plot-

ted as a comparison to the summation method using
ot = 3 (purple line in Figure 3).

The two-exponential fit seems to indicate that the mass plateau is slightly lower than where you

might expect to get a good single state fit in the variational method, yet it is statistically consistent.

This is likely an artefact of incorrectly using a single state to describe the contributions of many

excited states.

In Figure 2, we see the variational method producing a superior R function compared to the

individually smeared results. We also see that the variational method seems to have at least removed

all the transition matrix element terms, B in Eq. 2.9, as it demonstrates independence of 7 from 5

to 11.
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Figure 5: Same as the R function values shown in
Figure 4, overlaid with a two-exponential fit over
both current and sink times (f & 7). The lines
correspond to the two-exponential fit function con-
structed and the shaded area corresponds to the g4
parameter extracted from the two-exponential fit.

In Figure 3 we show the summation re-
sults for g4. Here we vary the total source-sink
separation and compute the summed ratio de-
fined by Eq. (2.6). We see no statistically sig-
nificant change between the 4 different calcu-
lated g4 values for each 4 coloured lines, which
correspond to varying the o7 value in Eq. (2.6).
We can observe that the linear fit lines are be-
ing heavily constrained by the smallest source-
sink separated results due to the weighted fit,
which might be problematic as these are the
points that are most affected by excited state
contamination. In the summary plot, Figure 6,
we show the results extracted when we omit
the smaller source-sink separation 10 as well
as omitting 10 and 13 to test how the method
depends on the smaller source-sink separated
result.

Turning to Figure 4, we see that the summation result (red line in Figure 4) produces a value

which is larger than any value produced even from the largest source/sink separated points.
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Figure 6: Summary of all the extracted values for g4 over the different methods for source-sink separations
“r” and smearings “sm”. Ot for the two-exponential method refers to the number of points excluded from
the initial and final current insertion times in the analysis. See text for more details.

For g4, doing a combined two-exponential fit to all the source/sink separated data as in Figure
5, the result is very similar to a constant “plateau” fit (over a reasonable fit range) for the largest
source/sink separated result. Similar to the summation method, the two-exponential method is
heavily weighted by the smallest source-sink separated values which can be problematic as these
values are most susceptible to excited state contamination.

In the final summary plot for g4 containing all the extracted values from all the different meth-
ods calculated (Figure 6), we see a trend in the summation method to a common value when we
exclude the smaller source-sink separated results (changing symbols). Applying a two-exponential
fit to each of the smearings calculated at = 13 (2exp / t=13 points) yields a common result that is
compatible with the variational method. Excluding the smallest two source-sink separated results
from the two-exponential fit (2exp # # 10, 13 in Figure 5) we see no change to the result.

4. Summary

This paper has shown how the variational approach for calculating the axial vector current has
removed all statistically significant excited state contamination. This contrasts to the summation
and two-exponential fit methods, where it is questionable whether the excited state contamina-
tion has been completely eliminated. The variational method undertaken in this analysis required
approximately 71% of the computing time compared to summation and two-exponential fit meth-
ods. The variational method result of g5® = 1.1203(96) agrees within statistical error with the

Feynman-Hellmann theorem result of gh” = 1.101(24) [20]. Other observables not shown in this
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paper include the scalar charge gs and the momentum fraction (x). Future work will study non-zero
momentum transfers, as well as the tensor charge gr.
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