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Silicon Photomultipliers (SiPMs) are a novel generation of photon detectors designed as an 
array of independently operated Geiger-mode APDs (pixels) with common output. SiPM 
provides proportional detection of low-level light pulses starting from single photons with 
remarkable photon number and time resolution at room temperature. Now they are worldwide 
recognized to be competitive with vacuum photomultiplier tubes (PMTs) and avalanche 
photodiodes (APDs) for scintillation and Cherenkov light detections in such areas as particle 
physics and nuclear medicine. Well-known specific drawbacks of SiPMs are excess noises 
caused by stochastic processes of crosstalk and afterpulsing as well as non-linearity and 
saturation of SiPM response to intense light pulses due to limited number of pixels and non-
instant pixel recovery. 

This study presents an analysis of SiPM performance based on probability distributions of the 
key stochastic processes affecting SiPM response: photo-conversion, dark generation, avalanche 
multiplication, crosstalk and afterpulsing, non-linearity and saturation losses. SiPM performance 
in photon number (energy) resolution is represented in terms of specific excess noise factors of 
these processes identified as comparable metrics of their contributions. SiPM time resolution is 
shown to be defined by photon number resolution and by temporal profiles of photon arrival and 
photon detection time distributions, and a single electron response. 

Analytical results of this approach are applied to compare a performance of the modern SiPMs 
with each other and with conventional PMTs and APDs in typical scintillation and Cherenkov 
detection applications. The results also seem to be useful for SiPM characterization, selection, 
and application-specific optimization as well as for SiPM design improvements. 
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1. Introduction 

Initially Silicon Photomultipliers (SiPMs) have been widely recognized as a new 
generation of photon detectors due to an exceptional resolution of short weak light pulses. Being 
designed as an array of independent Geiger-mode APDs (pixels) with a common output, SiPMs 
generate an output signal as a sum of Geiger breakdowns from each fired pixel producing 
precisely calibrated charge packets. Thus, this kind of an output represents inherently discrete 
detection events in an analog form where the number of events or single electron responses 
(SER) is clearly resolvable. Geiger mode operations of the SiPM pixels also result in good 
timing resolution of low-level light pulses and complement advantages of SiPM technology in 
time-of-flight (TOF) applications. 

Modeling of a SiPM response and its statistical characteristics was in a focus for many 
studies even at the early stages of SiPM technology [1]. In contrast with conventional analog 
APDs and PMTs, an extremely low excess noise factor of charge multiplication mechanism 
based on Geiger breakdown with strong negative feedback facilitates modeling of a SiPM 
response in discrete SER units. On the other hand, considerable noise contributions from 
specific secondary correlated events, namely, crosstalk and afterpulsing processes, make such 
modeling much more complicated [2]. Another kind of complications is associated with 
nonlinearity of a SiPM response due to limited number of pixels and non-instant pixel 
recovering at relatively intense light signals [3]. 

This report is an overview of analytical models of SiPM response and performance 
developed and modified with respect to SiPM specifics mostly during last decade. They appear 
to be reasonable, powerful, and relatively simple tools for analysis of SiPM photon number and 
time resolution in various applications. 

2. SiPM performance in photon number resolution 

2.1 Burgess variance theorem and excess noise factor 

Common measure of a detector quality is a signal-to-noise ratio (SNR) defined by 
stochastic properties of some output signal quantity – a random variable K (e.g. voltage, charge, 
number of events) – by its mean value E[K] = μK and variance Var[K] = σK

2 (standard deviation 
σK). Inversely, noise-to-signal ratio or resolution R is a common measure of a detector precision 
in quantifying an incident signal: 

1K
K

K K

R
SNR




       (2.1) 

Photon detection process combines a series of internal conversions of input photons N into 
output electrons K, and these conversions are random processes. Typically, N is a random 
variable as well. In order to calculate how the signal resolution changes from an input to an 
output of a detector, the Burgess variance theorem is applied. Random conversion process is 
often described as a random amplification of electrons [4]. In order to predict mean and variance 
of an output random variable K(N) by known mean and variance of an input random variable N, 
amplifications are assumed to be independent on each other, and a mean and variance of an 
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output random variable M at non-random input with N=1 (single electron) are also to be known 
as follows: 

2[ 1] 1 [ 1] 0 [ 1] [ 1]M ME N Var N E M Var M         (2.2) 

By definition, excess noise factor (ENF) of single electron multiplication in this case is 
2

2
[ 1] 1 M

M

ENF M



          (2.3) 

ENF given by (2.3) is a rather relevant and commonly used measure of a “noisiness” of 
APDs and PMTs. Accordingly to the Burgess variance theorem, N electrons at the input with 
known mean and variance 

2[ ] [ ]N NE N Var N          (2.4) 

give rise to K electrons at the output as follows: 
2 2 2[ ] [ ]M N M N N ME K N Var K N               (2.5) 

In order to define internal noisiness of this amplification process, we have to consider 
another definition of ENF typically used in electronics for analysis of amplifier performance, 
which takes into account an inherently noisy input of the amplifier: 

2 2
2 2

2 2[ ] K N
K N

K N

ENF K N R R
 
 

        (2.6) 

Applying results of (2.5) to (2.6), ENF of noisy input signal amplification is found to be 
2 2

2

1
( ) 1 [ ]

[ ]
M N

M N

ENF K N Fano N
Fano N

 
 

        (2.7) 

It means that amplification process ENF is sensitive to statistics of input signals: high 
input noise (super-Poissonian statistics, factor Fano[N] > 1) results in lower ENF masking 
noisiness of amplification process with respect to single electron amplification, and input with 
Poissonian statistics (factor Fano[N]=1) does not affect ENF: 

[ ] [ 1]
[ ] 1

ENF K N ENF M
Fano N




      (2.8) 

Expression (2.7) allows combining results of step-by-step conversions as a product of 
specific ENFs resulting in worsening of resolution in each conversion process, and it could be 
simplified further if factor Fano for some particular process is equal or close to 1: 

1 2...K N process process N totalR R ENF ENF R ENF         (2.9) 

Thus, results of signal detection are completely defined by total ENF of a detection 
process, and our analysis of SiPM performance in photon number resolution is based on ENF 
approach (2.9). 

2.2 Specific excess noise contributions 

2.2.1 Photodetection process 

Conversion of photons in photoelectrons and conversion of photoelectrons in Geiger 
breakdowns or counts APD are random processes of so-called binomial selection of photons 
(electrons). A result of a single particular conversion obeys Bernoulli distribution. It is well 
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known that binomial selection of Poissonian photons N results in a Poissonian number of counts 
K with a mean E[K]=PDE·μph. An excess noise of the binomial selection process is defined only 
by statistics of the conversions (Fano[N]=1). It means both expressions (2.3) and (2.7) yield the 
same result on ENF. 

Bernoulli process for non-random single photon with detection probability PDE has 
ENFBern: 

2

2 2

(1 ) 1
1 1Bern

Bern
Bern

PDE PDE
ENF

PDE PDE




 
         (2.10) 

Binomial selection process for Poissonian photons with mean output number of counts 
PDE·μph has ENFBinom = ENFBern= ENFPDE 

2 2 11 1
Binom K N

ph ph

ENF R R
PDE PDE 

  


    (2.11) 

2.2.2 Dark noise 

Dark electron generation is a Poisson process; therefore merging of dark electrons (with 
mean μdark) with photoelectrons (with mean μpe) results in Poisson distribution. As a rule, a mean 
number of dark counts is used to be subtracted from a mean output counts, however, this 
subtraction increases an output variance at some fraction n which depends on precision of the 
subtraction: 

1 1dark
DCR

pe ph

n n DCR T
ENF

PDE


 
  

   


      (2.12) 

Where n=1 corresponds to a priory known mean value of DCR, and n=2 is a case of equal 
times being spent for measurements in dark condition and under illumination. 

2.2.3 Multiplication process 

Multiplication process has been considered in details above, and its ENFgain is independent 
on statistics of input for Poissonian photoelectrons entering into an avalanche region: 

2

21 gain
gain

gain

ENF



          (2.13) 

However, an output number of electrons produced in this multiplication process follow 
some probability distribution. In general, we do not need to know this distribution because 
SiPM provides extremely low ENFgain ~ 1.01… 1.05 due to strong quenching of an avalanche. 
Influence of ENFgain on ENF of the next conversion stage is expected to be weak and it can be 
evaluated by (2.5)-(2.7), where an output K is re-normalized in SER units as Kser: 

2
2 2 2 2 2

2

2 2 2 2 2

2 2 2

2

2

[ ] [ ]

[ ] 1

ser ser

ser

ser

K K
K N K K M N N M

M M

K K N M M
ser

K M N N M M

M
ser Gain

M

Fano K Fano N

Fano K ENF
N Poissonian

        
 

    
     




      

     


  


   (2.14) 
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As shown by (2.7) it means that low noise multiplication has a negligible influence on 
statistics of the next conversions, thus the distribution of primary counts is close to Poissonian. 

2.2.4 Correlated noise: crosstalk and afterpulsing 

Next stages and other types of conversions are associated with crosstalk and afterpulsing 
effects – secondary Geiger breakdowns initiated by primary ones. Typically, the crosstalk is 
almost instantaneous responses of pixels surrounding the primary one due to a secondary photon 
emission from an avalanche area, and the afterpulsing is a delayed response of the same pixel 
due to de-trapping of avalanche electrons. These correlated stochastic processes result in 
dramatic changes in statistics of detected events: a number of counts become a non-Poissonian 
random variable and a time interval between counts deviates from a single-exponential 
distribution of Poisson processes, as observed, for example, in [5], especially for Hamamatsu 
MPPCs. R&Ds of correlated process models, probability distributions, statistical moments as 
well as associated excess noises are very challenging and highly demanded work in order to 
utilize a full potential of SiPM technology in a photon-number-resolving detection. Generally, 
there were a few models proposed to describe correlated processes and probability distribution 
of number of counts initiated by a non-random single primary one:  

1) Binary (only 0 or 1 and no more) secondary counts [6], [7] – Bernoulli distribution; 
2) Urn model – binary counts from a fixed number of pixels [8], [9], e.g. adjacent to the 

primary one (4 side-by-side or 8 with extra corner-by-corner ones) [9] – Binomial 
distribution; 

3) Random single chain or sequence of binary counts – Geometric distribution [2], [10]; 
4) Branching Poisson process when a primary event, as well as every secondary one, 

creates the next generation of Poissonian-distributed secondary events [10]-[12]; as 
shown in [10], this process results in Borel distribution of a total number of events.  

In case if SIPM detects a light pulse with a Poissonian number of photons when a total 
number of detected events obeys a compound Poisson distribution combined by the Poisson 
distribution of primaries and the specific distribution of secondaries pointed above 1)-4).  

Bernoulli distribution is a simplest possible model of correlated event valid only if a 
probability of the higher-order secondaries is negligible. Binomial model [9] has been 
developed and applied to describe an optical crosstalk in the case of short-distance absorption of 
secondary photons (comparable to a pixel pitch). A geometric model has been developed for any 
kind of correlated events and initially applied for crosstalk with some reasonable results at 
relatively low values of probability to get one or more correlated events per single primary Pcorr 
~ 10%-15%. Branching Poisson model initially was focused on a long-distance crosstalk 
process when all generations of secondaries have not been affected by a limited number of 
available (ready-to-be-fired) pixels. As verified in several experiments [10], [13], [14], the 
probability distribution of the crosstalk process agrees fairly well with the branching Poisson 
process model. However, there is also an observation of depressed high-order crosstalk 
probabilities with respect to the Borel prediction [15], probably, because of a short-distance 
crosstalk effect. Recently, an afterpulsing is simulated as a branching Poisson process assuming 
a single avalanche creating a Poisson-distributed number of afterpulses, and when iteratively 
applied to each of the generated afterpulses [12]. 
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ENF of the correlated processes was initially derived in [2] and discussed [3], and then 
advanced results were presented in [10].  

In case of non-random single primary event initiating some random number of secondary 
events with probability to get one or more correlated events per single primary Pcorr, mean and 
variance of total number of counts (including a primary one) of Geometric model are found to 
be  

 
2

2

1

1 1
Corr

Geom Geom
Corr Corr

P

P P
  

 
     (2.15) 

And its ENFGeom is shown to be as follows: 
2

2
1 1Geom

Geom Corr
Geom

ENF P



           (2.16) 

Branching Poisson processes are used to be parameterized in a mean number of events in 
one generation λ – the most convenient single parameter of Poisson distribution. A relation 
between λ and Pcorr  can be easily determined by probability to get zero counts.  

 1 Pr( 0) 1 exp( ) ln 1Corr CorrP counts P            (2.17) 

Mean and variance of total number of counts (including a primary one) of branching 
Poisson model are found to be 

 
2

3

1

1 1
Bran Bran

 
 

 
 

      (2.18) 

So, ENFBran of the branching Poisson processes is shown to be as follows: 

 
2

2

1 1
1

1 1 ln 1
Bran

Bran
Bran Corr

ENF
P


 

   
  

    (2.19) 

Obviously, the branching Poisson process model (2.19) predicts a super-linear dependence 
of ENF on Pcorr, much stronger than linear one for the Geometric model (2.16). Expression 
(2.19) is in a good agreement with some experimental results and Monte Carlo simulations of 
SiPM response affected by crosstalk, for example, [13], [16]. It also mostly fits the ENF 
dependence on the mean number of Poisson events in one generation modeled for afterpulsing 
([12], Figure 2, except the last point at λ = 0.9). 

2.3 Excess noise of nonlinearity 

All processes discussed above are linear conversions: mean number of photons, electrons, 
counts are in a linear proportion. However, large input signals are converted to output ones with 
some nonlinearity by any real detector, and a SiPM as an array of binary photon detectors is 
especially nonlinear. In order to determine a resolution provided by such a detector for an input 
signal, the detector has to be calibrated (output scale has to be translated to the input scale). 
Therefore, input signal resolution has to be calculated with a nonlinearity correction [13]: 

out out
nonlin out

in in

d
R R

d
 
 

         (2.20) 

On the other hand, it would be convenient to introduce this nonlinear correction in 
definition of ENF in order to facilitate final estimations of SiPM performance by ENFnonlin: 
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2 2 22 2 2

22 2
nonlin out out out out out

nonlin
in in in inin in

R R d d
ENF

d dR R

   
   

     
        

     
  (2.21) 

Remarkably, that an absolute value of a mean output signal is not included in (2.21) 
because calibration procedure translates the output mean back to the input mean. So, an internal 
performance of a detector does not depend on that (while an electronic noise is not accounted). 

Obviously, nonlinearity of detectors is caused by lower responsivity for larger signals; 
however, from statistical point of view nonlinearity is a result of random losses of input photons 
associated with a new type of specific excess noises. 

2.3.1 Nonlinearity with no pixel recovery: binomial distribution of detected events 

Dynamic range, nonlinearity and saturation of a SiPM response were observed and 
discussed at early stages of SiPM development, first of all in case of short light pulse detection 
without recovering of pixels during detection [18]. Initial analytical results on a distribution of a 
number of fired pixels and photon number resolution of SiPM was presented in [19], [20]. 
Detailed analysis of photon number resolution and an introduction of an excess noise factor of 
binomial nonlinearity of SiPM based on (2.20), (2.21) was given in [3]. It shows that 
nonlinearity makes actual photon number resolution worse while resolution of output signal 
appears to be better and tends to zero at high pixel load L (mean number of potential detections 
per pixel) and probability to fire a pixel Pfire: 

 2

2

2 2

1

1

1 1
0

1

1 1
1 ( )

2

phL
fire

pix

out pix fire out pix fire fire

L
fire

out L
pix fire pix

L

nonlin nonlin nonlin
ph

PDE
P e L

N

N P N P P

P e
R

LN P N e

e L
R ENF ENF o L

PDE L



 










  

     


   

 


     



  (2.22) 

2.3.2 Nonlinearity with fixed dead time and exponential pixel recovery 

Loss of photon counts due to dead time after a breakdown is a well-known issue for 
Geiger counters. Initial analysis of a non-paralyzable dead time detection process was made in 
the 1970s [21], [22]. Based on that results, SiPM photon number resolution and excess noise 
factor in case of long light pulse detection (pulse width T >> recovery time τ) were derived [3]. 

2
3

2

2

1 1

1 1
0

1

1
1

ph ph
out out

out
ph

nonlin nonlin nonlin
ph

PDE PDE

L LT T

R
LPDE L

T

R ENF ENF L
PDE T

 
  






 
 

     
 

  
  

    


    (2.23) 
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However, exponential pixel recovery due to a recharging of quenching RC circuit was 
expected to be a better fit to model SiPM performance. This approach predicts higher excess 
noise due to double randomness of detections: probability to fire pixel and developed gain are 
both dependent on random time since previous breakdown [23]. ENF, in this case, could be 
marginally estimated as: 

2

1

1
2

nonlin

L
TENF

L
T





   
 

 
        (2.24) 

2.4 Photon number resolution and total excess noise factor of SiPM 

Finally, in correspondence with ENF approach discussed in section 2.1 and expressed by 
(2.9) with nonlinear correction (2.21), performance of SiPM in photon number resolution is 
defined by total nonlinear ENF – a product of specific ENFs responsible for various noise 
contributions: 

SiPM PDE DCR gain CT AP nonlinENF ENF ENF ENF ENF ENF ENF        (2.25) 

However, at least one more noise sources has to be included in the model at the SiPM 
output – electronic noise of an acquisition circuit – which is additive to the SiPM output noise in 
such a way that it could be expressed by a corresponding ENFAQC: 

2

2
1 AQC

AQC total SiPM AQC
out

ENF ENF ENF ENF



        (2.26) 

Thus, SiPM photon number resolution at given resolution of incident photons Rph is 

     
( )

total ph

ph ph total ph
ph

ph

ENF
PNR R ENF PNR

Poisson


 




    (2.27) 

3. SiPM performance in time resolution 

3.1 Filtered marked point process approach 

Filtered marked point process approach to modeling of a transient response of signal 
detection and acquisition systems is well-known and developed in-depth [4], [24]. It is based on 
consideration of a signal as a sequence of point events (photons, electrons) of negligible time 
duration represented by Dirac delta functions convolved with instrumental response function 
(SER) of a detector of random amplitudes (marks) and fixed temporal profile hser(t). Recently 
this approach has been applied to SiPM time resolution models with more or less pronounced 
focus on specifics of the SiPM operations [25], [26], [27]. Point process event is specified by 
probability of the event in a given time t, and probability to initiate instrumental response (to 
detect photon, to trigger an avalanche) ρdet(t) is defined by convolution of corresponding 
probability density functions (PDF) of photon arrival ρph(t), primary triggering ρsptr(t) (equal to 
PDF of single photon time resolution histogram), and correlated triggering ρcorr(t) due to 
crosstalk and afterpulsing: 
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det c( ) [ ]( )ph sptr orrt t             (3.1) 

SiPM time resolution σtime in case of detection of Poissonian photons by leading edge or 
constant fraction discriminator technique (output signal crosses the discriminator level Discr at 
time tDiscr) is found to be 

2
2

det 2

det

( )

( )

noise
SiPM ser

time

ser

ph
Discr

V
ENF h t

Discr
d h t

N
t tdt






    


  


    (3.2) 

3.2 Cramer-Rao lower bound of time resolution and total excess time factor 

As soon as ENF appears to be relevant and convenient measure of SiPM performance also 
in time resolution as a key factor describing time-independent characteristics of SiPM while 
time-dependent ones are represented by convolutions of temporal profiles, it would make sense 
to try applying the same formalism (2.21) to detection of time stamps and excess noise of this 
detection: 

2 2
det det

22 2

( ) 1
( )

( )ph ph

t
ENF time

t d t
d t

 
 

  
  

   

     (3.3) 

Where σdet is defined by (3.2), so (without an electronic noise Vnoise) it could be rewritten 

 
2

sec2
det det 2

sec
det

( )1
( ) ( )

( )

ph sptr ser

ph
ph ph sptr ser

h t
t ENF N

N d h t dt t

  


  

      
    

  (3.4) 

In the same time, σph is an incident photon arrival characteristic – an ideal case of the best 
possible detector performance to be expressed by Cramer-Rao lower bound estimate σCRLB: 

2 2
2

0 0

0

1 1

( )

( )

ph CRLB
ph ph

ph

N d t t dt
dt

t t

 







  
  


     (3.5) 

Therefore, ratio of real and ideal detector variances (3.3) yields remarkable separation of 
pure photon number resolving metrics of ENF(Nph) and pure time-dependent characteristics of 
the detector with respect to ideal one (it make sense to define the last factor as an excess time 
factor, ETF): 

det 0( ) ( ) ( , )phENF time ENF N ETF t t        (3.6) 

However, these initial thoughts on relations between photon number and time performance 
as well as a concept of an excess time factor should be further studied in details. 

4. Conclusion 

Analytical modeling of SiPM provides promising results of reasonable simplicity with 
reasonable attention to SIPM specifics. ENF is found to be the most relevant and universal 
metrics of SiPM performance. 
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