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Highly segmented scintillating detectors read out by silicon photomultipliers offer a potential so-
lution for experiments with strict material and space constrains where precise time and position
information is required. The current work addresses the performance of Kuraray SCSF81 round
scintillating fibers with 250um diameter readout by Hamamatsu MPPCs. Two to five fiber layers
were assembled into ribbons and their time and position resolving capabilities were determined.
Additionally, two coupling schemes between the scintillators and the photosensors were evalu-
ated. In the first configuration, each individual fiber was mapped to an independent photosensor,
while in the second, a whole fiber ribbon was attached to a multichannel silicon photomultiplier
array. Their performance was characterized in accelerated proton and argon ion beams. For a
ribbon of two fiber layers irradiated with heavy ions a position resolution of 0,s ~ 50 um was

achieved. Under the same conditions, a time resolution, oy, of better than 120 ps was measured.
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1. Introduction

The silicon photomultipliers are rapidly developing solid state detectors characterized by fea-
tures such as fast response time, single photon counting capability and insensitivity to magnetic
fields. With their compact size and relatively high photon detection efficiency, exceeding 30 % [1],
they offer an attractive readout solution for optical systems with high granularity, such as scintil-
lating fiber ribbons.

2. Detector Systems

Thin multi-clad SCSF-81 Kuraray plastic scintillating fibers with 250 tm diameter have been
used for the production of the detector systems evaluated in this work. With the help of a winding
tool, the fibers have been tightly staggered and bound together into ribbons of two to five layers.
The construction process, developed at the University of Geneva, allows two distinct fibre-SiPM
coupling schemes to be implemented. In the first case, a multilayer fiber ribbon can be cut, polished
and directly attached to a photosensor with an array-like layout as shown in Fig. 1. In the second
one, a short part of the fiber ends are left loose, such that they are later fanned out through a matrix
connector and coupled to an array of individual SiPMs as illustrated in Fig. 2. Each configuration
combines some advantages and disadvantages. For example, a detector with a single fiber layout
provides higher granularity compared to an array layout but the light output of the single fiber
is lower due to the smaller space occupancy of the fibers. In the case of an array layout, more
photons can reach a SiPM channel, however, due to the tight fiber placing within a ribbon, photons
from one fiber can trigger signals into two neighboring readout channels. Hence, depending on the
requirements of a specific application one or the other solution might be favored.

2.1 Array Layout

For the array layout, two sets of ribbons were prepared: one set of 10 cm long and 3.5 cm
wide ribbons with two layers of fibers, and another set of 10 cm long and 1.6 cm wide ribbons with
five fiber layers. They were readout by Hamamatsu S10943-3183 monolithic MPPC arrays with
128 readout channels as shown in Fig. 1(b). Each SiPM channel consists of 4 x24 microcells with
dimensions 57.5 x 62.5um? and occupies an active area of 0.23x 1.5 mm?. It exceeds significantly
the two layer ribbon thickness of 0.5 mm and thus guarantees full coverage of the ribbon cross-
section. The thickness of the 5-layered ribbons, however, is 1.2 mm, so it requires precise alignment
to the MPPC array.

Modular transistor-based readout system has been developed at the University of Geneva. It
delivered power to the silicon photomultipliers and amplified the output analog signals. A rise-
time of less than a nanosecond and a fall time of 25 ns for a SiPM device with square 50 um
microcells has been achieved. The preamplifier gain can be adjusted manually up to 100, resulting
in a few tens of mV amplitude for a single photoelectron.

2.2 Single Fiber Layout

In the single fiber readout configuration, ribbons consisting of four layers with sixty to sixty-
four fibers per layer and a length of 36 cm have been assembled. For each ribbon a sample of thirty-
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(a) Cross-section of a 4-layer ribbon with 250um (b) Hamamatsu MPPC array with 128 channels
Kuraray SCSF-81 fibers. of 0.25x 1.3 mm? and 50um microcells.

Figure 1: Coupling of a fiber ribbon with an array layout to a Hamamatsu device.

two fibers (eight fibers per layer) has been fanned out, polished and directly coupled to an array of
individual photosensors, see Fig. 2(a). The photodetectors are 1 x | mm? Hamamatsu S12571-050P
MPPCs in surface mount packages. They have been soldered in 4 x4 arrays to two PCBs to match
the desired layout, Fig. 2(b). Custom made, transistor-based electronics, providing output signals
with similar characteristics as in the array readout, has been developed in collaboration with the
University of Zurich.

(a) A sample of 32 fibers from a 4-layered ribbon (b) A photosensor matrix used to readout sin-
fanned out through a connector. gle fibers. The devices are surface mounted
1x1 mm? Hamamatsu S12571-050P.

Figure 2: Single fiber readout coupling scheme. Two PCBs with photosensors are attached next to each
other to match the fiber pattern.

3. Experimental Setup

The detectors were tested at CERN SPS during two beam runs. First, in a 40 GeV/c momen-
tum per nucleon “°Ar beam, and afterwords in a run with 150 GeV/c protons. Two to four fiber
detectors were aligned along the beam axis to form an autonomous tracking system. A cross of
two scintillator counters downstream of the tested ribbons produced the trigger signal. 64 SiPM
channels were used during the *° Ar beam run, and 128 channels in the protons one. VME constant
fraction discriminators, QDC V792 and TDC V775 modules digitized and sent the data for offline
analysis. All measurements were performed at room temperature.

4. Results

4.1 “°Ar Beam

A beam of heavy ions, such as the “°Ar accelerated up to a momentum of 40 GeV/c per nu-
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cleon, deposits sufficient amount of energy to produce a few hundreds of photons when traversing
a single 250 um fiber. Having this amount of light incident on less than 400 microcells for the
1x1 mm? SiPMs results in saturation of the sensor. To protect the photosensors, low bias voltage
was set exactly at the breakdown level and a polarizing foil was placed between the fibers and the
array photodetector. Additionally, the signals had to be transported out of the beam area over long
coaxial cables introducing about 200 ns delay. The rise time was deteriorated from 1 ns after the
transistor preamplifiers to 4 ns at the input of the discriminators. For the available modules, how-
ever, it was advantageous as the minimal delay in the constant fraction discriminators could only
be set to 3 ns. Each fiber was coupled to a SiPM at a single end because of the high light output in
the fibers.

Fig. 3(a) is an example of the correlation between a QDC signal from a single fiber in one ribbon
and a QDC signal from an array channel in another ribbon located 20 cm away. One could clearly
distinguish the argon ions passing through the system. Cuts were subsequently applied on each
event selecting only Ar ions for the analysis.
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Figure 3: Event selection and time difference resolution for detectors in the “°Ar beam test.

Time resolution The TDC modules operated in common start mode, with the start given by
the trigger. The array and the single channel SiPM behave similarly to each other and have the
same waveform characteristics. Moreover, the sizes of their microcells and the areas covered by
each channel are almost identical. Therefore, one could assume that both devices have equal time
resolving capabilities. Thus, their individual time resolution could be determined from their time
difference distribution. Using the facts that AT = Tslmp - Tszmp’ 0} = 0} = or and the two time
measurements are independent one could find Gy = V207, hence o7 = Oxr / V2. The decay
time of the scintillators is 2.8 ns [2], however the light yield is too high to cause any time jitter
due to the arrival time of the first photons on the photosensors. Fig. 3(b) shows the time difference
distribution between one fiber channel and one array channel whenever they generated a signal from
an argon ion traversing the scintillators. In this case 6a7 = 162 ps, therefore o7 = 162/4/2 = 115 ps.
The distribution of the obtained time difference resolutions for different pairs of channels that fired
together has an mean value E (o7 ) = 153 ps and a standard deviation 6(oar) = 18 ps. The average
time resolution of the single channels was estimated to 67 = 108412 ps.



A. Damyanova

Position resolution and efficiency Three detectors, aligned one after another at a distance of
20 cm along the beam axis, are used to study the position resolution and the efficiency of the
fiber system. A hit is determined by the amplitude weighted average of the positions of all the
fibers that triggered a signal in the photodetectors. A best line fit was calculated for the obtained
three coordinates and the deviation from the fit was used as a measure of the position resolution.
Due to the high light intensity, both the single fiber and the array layouts led to an estimate of
oax = 56(5) um for the position resolving power of the constructed fiber-SiPM system.

By selecting only the two outer detectors, an efficiency measurement for the middle one was
performed. It resulted in an efficiency estimate of 100% for a detector with as little as two fiber
layers.

4.2 Protons Beam

Protons with 150 GeV/c deposit energy similar to a minimum ionizing particle when interact-
ing with carbohydrates [3]. Thus, contrary to the hundreds of photons produced by the argon ions,
the amount of scintillating light reaching a photo sensor in the case of protons is in the order of
about 10-15 photons. Once the photodetector efficiency of the SiPMs is taken into account, about
35% [1], the expected number of detected photoelectrons drops down to about 4-5. In the current
measurements setup the single fiber layout detector was equipped with photosensor on both sides
of each of the 32 fanned out fibers, while the ribbons coupled to multichannel arrays were only
readout on one side.

The first step in the event selection algorithm consists of choosing only events that triggered a
signal in the proper time moment. From the QDC vs TDC spectrum one could clearly separate the
signal events from the background. Due to the low number of photoelectrons, however, additional
constrains are applied so as to distinguish between dark counts and actual events. First of all, the
channels that produced a signal with the highest amplitude per event and per device are required to
have at least three photoelectrons. Such a strong condition is necessary in order to assure reliable
tracking information. Afterwords, the neighboring channels are added to the hit if they have an
amplitude higher than 0.5 ph.e. Additionally, channels firing at a distance of more than two fiber
diameters from the maximum channel are discarded from the hit. Once all fired channels have
been combined, the position of the hit in each detector is estimated as a weighted average of the
positions of all fired channels, with the weight given by the number of photoelectrons detected. A
straight line fit is constructed and only lines with a slope smaller than the ratio between one fiber
diameter and the distance between two detectors are selected. The purpose of such a cut is to study
the efficiency in different subregions of the middle detector since there were some dead channels
which would alter the full size efficiency results.

Position resolution and efficiency A summary of the obtained results is given in Tables 1 and
2. The number of photoelectrons detected is per single SiPM channel. In the case of a single fiber
readout, the number of photoelectrons is at the one end of a single fiber. For the array layout this
value corresponds to a whole strip of fibers matched to a SiPM channel. The efficiency, however,
is given for a whole ribbon: four staggered layers in a single fiber configuration; five or two layers
in the array layout. The results from ribbons prepared with and without TiO, mixed in the adhesive
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are presented in single columns separated with semicolons. There is a tendency in increasing the
number of collected photoelectrons and consequently the efficiency of the detector system with the
applied bias to the photosensor. Due to a limited beam time, however, the evaluation of the system
behavior at higher bias voltages was not possible.

Over Voltage Ph. el. per ch. Position Res. oy [um] Efficiency
[V] Clear : 20% TiO, Clear : 20% TiO, Clear : 20% TiO,
0.5 24:27 148 : 148 0.78 : 0.73
1.0 2.7:3.0 125: 133 0.85:0.85
1.5 29:33 133: 135 0.87:0.89
2.0 3.0:3.6 155: 133 0.92:0.93

Table 1: Efficiency and position resolution summary for single fiber layout detectors. Clear and 20% TiO,
refer to the composition if the optical adhesive used to keep the fibers in a ribbon. TiO, powder was added
in order to increase the light collection efficiency.

Over Voltage [V] Ph. el. per ch. Position Res. ox [um] Efficiency

2.0 4.2 165 0.90
2.5 4.4 158 0.91
3.0 4.0 165 0.95
2.0 2.8 167 0.82

Table 2: Efficiency and position resolution summary for array layout detectors. The upper part of the table
is for an array of 5 layers. The last line gives results from the measurements for an array of 2 fiber layers.
For both detectors only transparent adhesive was used.

Time resolution The same technique and logic were applied to this data set as to the argon one, in
order to determine the time resolution of the detectors. The average single channel time resolution
was estimated to 6r=951£42 ps at a threshold of 0.5 ph.e. An improvement is observed when the
number of photoelectrons increases.

5. Discussion and Potential Applications

The parameters of the fiber systems determined from the argon beam serve as a reference
for the best achievable results with the given configurations and readout electronics. A low beam
intensity and absorbing foils assured the photosensors had enough time for recovery after the severe
illumination with scintillating photons. Unfortunately, with the significantly decreased amount of
light produced in the proton beam, the characteristics of the systems deteriorate. The lower light
yield and the not so optimal optical contact between the sensors and the fibers resulted in time
jitter of the first detected photoelectrons. A higher number of registered photoelectrons would lead
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to a better position resolution, since one of the limiting factors is discriminating the dark counts
and pixel cross-talk from real signals. Once a higher amplitude signal is produced, the distinction
becomes trivial. A slight discrepancy in the detected number of photons in the five layer system
is observed when compared to the two-layered arrays. The number of measured photoelectrons
is lower than expected and this result is attributed to a misalignment between the ribbon and the
photosensor active area.

The overall performance of the systems is promising and the potential applications of the
presented detectors include a timing hodoscope for the Mu3e experiment [4] at PSI Switzerland,
and a beam monitoring detector for the NA61 experiment [5] operating at CERN SPS. For the
Mu3e experiment time information is essential in order to distinguish electrons passing through
the fibers at a rate of several MHz. While in NA61 the most important characteristic of the system
would be the position resolution for beam particles. In both cases, however, there are tight space
and power constrains, so silicon photomultiplier are preferred to conventional PMTs.
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