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The status of chiral perturbation theory in the meson sector is illustrated with several topical
examples. The longtime discrepancy between theory and experiment for the charged pion polar-
izabilities has now been resolved in favour of the chiral SU(2) result to next-to-next-to-leading
order. For chiral SU(3), the main obstacles are the large number of badly known coupling con-
stants (LECs) and the lack of convergence of the low-energy expansion in many cases of interest.
I describe a new global fit of the LECs in the strong sector that leads to a prediction of the CKM
matrix element Vus in agreement with the latest lattice determinations. The slow convergence of
the chiral series is particularly acute in transitions with strong final-state interactions calling for
dispersive treatments. The status of dispersive approaches is reviewed for K`4 decays and for
η → 3π decays where precise measurements of Dalitz plot distributions have recently become
available.
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Mesonic CHPT

1. Introduction

Chiral perturbation theory (CHPT) in its original form [1, 2, 3] describes the strong, elec-
tromagnetic (external photons) and semileptonic weak interactions at low energies for the light
pseudoscalar mesons, pions only for chiral SU(2), the light pseudoscalar octet for chiral SU(3).
Later on, the CHPT scheme was extended to account also for the nonleptonic weak interactions
and for radiative corrections, requiring the incorporation of dynamical photons and leptons. A
brief review of the relevant chiral Lagrangians can be found in Ref. [4]. Schematically, they are
displayed in Table 1.

Lchiral order (# of LECs) loop order

Lp2(2) + L odd
p4 (0) + L ∆S=1

GF p2 (2) + L emweak
G8e2 p0 (1) L = 0

+ L em
e2 p0(1) + L leptons

kin (0)

+ Lp4(10) + L odd
p6 (23) + L ∆S=1

G8 p4 (22) + L ∆S=1
G27 p4 (28) L≤ 1

+ L emweak
G8e2 p2 (14) + L em

e2 p2(13) + L leptons
e2 p2 (5)

+ Lp6(90) L≤ 2

Table 1: Effective chiral Lagrangian in the meson sector for chiral SU(3), with the number of LECs in
brackets.

Most of the strong, electromagnetic or semileptonic weak processes have been calculated up
to next-to-next-to-leading order (NNLO), which includes one- and two-loop contributions. For a
review of CHPT at the two-loop level see Ref. [5], for a repository of corresponding amplitudes,
which is regularly being updated, see Ref. [6]. For the nonleptonic weak interactions and for
radiative corrections, complete calculations exist in general only at NLO (one-loop level) although
attempts at going beyond have been made in several cases (unitarity corrections, dispersion theory,
etc.).

Except for the technical complications of higher orders, the main obstacle is the rapidly grow-
ing number of coupling constants usually denoted as low-energy constants (LECs), characteristic
for an effective (nonrenormalizable) quantum field theory. As shown in Table 1, only the strong
chiral Lagrangian has been carried to the NNLO level precisely for that reason. For instance, for
the nonleptonic weak Lagrangian even many NLO LECs are poorly known. In the strong sector,
some progress has recently been made to estimate many LECs up to NNLO. This will be reviewed
in Sec. 2.

In addition to badly known LECs, the lack of “convergence” of the chiral expansion in many
cases is the second major obstacle on the way to reliable predictions. This refers mostly to calcula-
tions in chiral SU(3) where the natural expansion parameter is M2

K/(4πFπ)
2 ' 0.20. In fact, there

are several examples where successive orders in chiral SU(3) increase by substantially more than
20 %. Prominent examples are η → 3π decays that will be discussed at length in Sec. 6. Instead
of calculating still higher orders in CHPT, the emphasis in the field has shifted towards dispersive
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Mesonic CHPT

approaches, especially in cases with strong rescattering in the final state. This status report bears
ample evidence for the growing importance of dispersive treatments in combination with CHPT.

Although the activity in the field has decreased during the past 10 years both in theory and
experiment, there are several key experiments still running with a large impact on the field. Two of
the most important recent experimental advances in our field were presented at this Workshop and
will be covered in this talk: the COMPASS experiment measuring the charged pion polarizabilities
and several recent experiments investigating η → 3π decays.

Here is an outline of the talk. In Sec. 2 I will discuss the status of LECs in the strong sector.
I will describe our recent attempts to get a better handle on the LECs of both NLO and NNLO by
means of a global fit yielding a preferred set of LECs termed BE14. The status of CKM unitarity is
reviewed in Sec. 3. The longstanding problem of the discrepancy between theory and experiment
for the charged pion polarizabilities has been resolved recently by the results of the COMPASS
experiment. The history of this problem is briefly recalled in Sec. 4. Moving up in meson masses,
recent activities in the semileptonic K`4 decays are reviewed in Sec. 5. To properly describe η→ 3π

decays is still a major problem for CHPT, especially in view of recent precise data for the Dalitz
plot distributions. Various dispersive approaches trying to improve on the NNLO CHPT amplitudes
are discussed in Sec. 6.

2. Low-energy constants

Cr
i = 0 Ref. [10]

103Lr
1 0.67(06) 0.45(07)

103Lr
2 0.17(04) 0.22(04)

103Lr
3 −1.76(21) −1.66(22)

103Lr
4 0.73(10) 0.51(12)

103Lr
5 0.65(05) 2.61(12)

103Lr
6 0.25(09) 0.73(06)

103Lr
7 −0.17(06) −0.54(05)

103Lr
8 0.22(08) 1.43(10)

χ2 26 25
dof 9 9

Table 2: Fits for NLO LECs Lr
i (µ) for two spe-

cial cases with fixed NNLO LECs Cr
i (µ). In the

second column, all Cr
i are set to zero. In the third

column, we use the Cr
i obtained from a chiral

quark model [10], itself an update of a previous
attempt [11] to determine the Cr

i . The renormal-
ization scale is always µ = 0.77 GeV.

Chiral perturbation theory as the prototype of an effective field theory depends on a large
number of coupling constants, increasing rapidly at higher orders. The relevant chiral Lagrangians
in the meson sector, with the associated number of LECs in brackets, are listed in Table 1 for chiral
SU(3).

A comprehensive survey of mesonic LECs can be found in Ref. [4]. In this talk, I will con-
centrate on a new determination of NLO and NNLO LECs in the strong sector [4] marked in red
in Table 1. This new determination is both an update and an extension of the previous global fit by
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Bijnens and Jemos [7]. Referring to Ref. [7] for the general strategy of the fit, I discuss here only
the new ingredients of our approach [4].

• In addition to the 13 observables employed by Bijnens and Jemos, we have also used the
relations between the chiral SU(2) LECs l j( j = 1, . . . ,4) [2] and the SU(3) LECs Li [3] and
Ci [8] obtained in Ref. [9].

• The altogether 17 input data depend on most of the Li(i = 1, . . . ,8) and on 34 combinations
of the Ci. It is therefore obvious that one has to make some assumptions about the Ci in order
to proceed. That this is a nontrivial task becomes evident from Table 2 where we consider
two special cases with fixed values for the Ci.

Both choices for the Cr
i in Table 2 clearly lead to unacceptable fits. In addition to the large

values of χ2, the LECs Lr
4, Lr

6 and 2Lr
1−Lr

2 show no sign of large-Nc suppression.
In order to proceed, we had to make some assumptions about the NNLO LECs. For most of

the 34 combinations of the Ci appearing in our 17 input variables, theoretical predictions exist in
the literature (see Ref. [4]), although in some cases conflicting with each other. We have used the
available information to define priors for the Ci with associated ranges of acceptable values. We
then use an iterative procedure employing two different methods (minimization or random walk) in
the restricted space of the Ci, with essentially the same results: if the fitted values of the Li deviate
too much from the NLO fit results (shown in the fourth column of Table 3) and/or if the χ2 is too
large, we modify the boundaries of the Ci space and start again. To speed up the convergence of
this procedure, we introduced a penalty function for bad convergence of the meson masses. On the
other hand, we did not enforce large Nc on the Ci from the outset.

NNLO free fit NNLO BE14 NLO 2014 GL 1985 [3]

103Lr
A 0.68(11) 0.24(11) 0.4(2)

103Lr
1 0.64(06) 0.53(06) 1.0(1) 0.7(3)

103Lr
2 0.59(04) 0.81(04) 1.6(2) 1.3(7)

103Lr
3 −2.80(20) −3.07(20) −3.8(3) −4.4(2.5)

103Lr
4 0.76(18) 0.3 0.0(3) −0.3(5)

103Lr
5 0.50(07) 1.01(06) 1.2(1) 1.4(5)

103Lr
6 0.49(25) 0.14(05) 0.0(4) −0.2(3)

103Lr
7 −0.19(08) −0.34(09) −0.3(2) −0.4(2)

103Lr
8 0.17(11) 0.47(10) 0.5(2) 0.9(3)

F0 [MeV] 64 71

Table 3: Various fits for the NLO LECs Lr
i (i= 1, . . . ,8). The values for the large-Nc suppressed combination

Lr
A := 2Lr

1−Lr
2 are shown separately. We suggest to use fit BE14 [4] in NNLO chiral SU(3) calculations.

The last two columns confront an up-to-date NLO fit with the original values from Ref. [3].

At the end of the iteration we perform a standard χ2 fit for the Li with fixed “best” values of
the Ci. The results are shown in Table 3 in the second and third columns. For comparison, we also
exhibit an NLO fit (4th column) and the original values of Gasser and Leutwyler [3] (last column).
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Referring to Ref. [4] for more details, I include a few comments here.

• All fits are very sensitive to L4 and tend to lead to values incompatible with large Nc. This
tendency is well known from previous global fits and can be understood to some extent
from the structure of the chiral Lagrangian [12]. We have therefore enforced small values
of L4 as supported by lattice studies [13]. It turns out that Lr

6 and Lr
A := 2Lr

1−Lr
2 are then

automatically suppressed as well.

• The quality of both NNLO fits in Table 3 is excellent. They only make sense with associated
sets of the Ci (see Ref. [4]).

• Once a decent convergence is enforced for the meson masses, we find reasonable conver-
gence for the other observables. The fitted Li together with the “best” values of the Ci show
again qualitative evidence for resonance saturation [14]. In particular, η ′ dominance is ob-
served for some of the Ci in accordance with large Nc [15].

• Our preferred fit BE14 is remarkably consistent with the NLO fits in the last two columns of
Table 3 spanning a period of nearly 30 years.

For a determination of other LECs (not covered by our fits) from τ decay data I refer to the
contribution of Golterman [16].

3. Status of CKM unitarity

Violation of unitarity of the three-generation Cabibbo-Kobayashi-Maskawa mixing matrix
would be a clear indication for physics beyond the Standard Model. The most sensitive test in-
volves the first row of the CKM matrix with elements Vud , Vus and Vub. In view of the present
sensitivity, only Vud and Vus are relevant for the unitarity test.

Table 4 collects the different sources of input for Vud and Vus.

matrix element input source significance

Vud superallowed β decays 4 4

neutron β decay 4

pion β decay

Vus K`3 decays→ | f K0π−
+ (0)Vus| 4 4

Γ(Kµ2)/Γ(πµ2), FK/Fπ , Vud 4 4

Γ(τ → Xsν) vs. Γ(τ → Xnonstrangeν), Vud 4

hyperon decays

Table 4: Sources of input for the determination of the CKM matrix elements Vud and Vus.

To pin down Vus independently of Vud , one needs f K0π−
+ (0), the K`3 vector form factor at t = 0.

Some steps in the 30-year-history of estimates/determinations of f K0π−
+ (0) are listed in Fig. 1.
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0.95 0.96 0.97 0.98 0.99

f
+

H0L
æ Leutwyler Roos 1984

æ Cirigliano et al. 2005

æ RBC�UKQCD 2008

æ FLAG 2011

æ FLAG 2014

æ FNAL�MILC 2014

æ ETMC 2014 prelim.

æ RBC�UKQCD 2015

æ Bijnens Ecker 2015

Figure 1: Incomplete list of determinations of f K0π−
+ (0): Leutwyler Roos 1984 [17], Cirigliano et al. 2005

[18], RBC/UKQCD 2008 [19], FLAG 2011 [20], FLAG 2014 [13], FNAL/MILC 2014 [21], ETMC (pre-
liminary SU(3) analysis) [22], RBC/UKQCD 2015 [23], Bijnens Ecker 2015 [24].

The three most recent lattice determinations are marked in red and will be used for the unitarity
test below. Combining the NNLO CHPT calculation of K`3 form factors [25] and fit BE14 for the
LECs [4], one finds [24]

f K0π−
+ (0) = 1−0.02276︸ ︷︷ ︸

NLO

−0.00754︸ ︷︷ ︸
NNLO

, (3.1)

leading to the CHPT prediction

f K0π−
+ (0) = 0.970±0.008 (3.2)

with a very cautious error estimate. This value should be compared with the average of the three
most recent lattice determinations (marked in red in Fig. 1)

f K0π−
+ (0) = 0.9703±0.0021 (3.3)

to be used for the following unitarity test (K`3 2015 in Fig. 2). The other input for Fig. 2 is taken
from the contributions of Lusiani [26] and Moulson [27] at CKM2014, except for the most recent
update of Vud [28].

Fig. 2 indicates that, instead of worrying about CKM unitarity, one should first try to straighten
out the seemingly disparate entries for Vus. Especially the extraction from τ data looks problematic
compared to the two precise determinations from K decays. At least among many theorists, the
measured branching ratio B(τ→ Xsν) is often suspected to be the culprit. Antonelli et al. therefore
proposed [29] to use K decays and lepton universality to calculate the decay widths Γ(τ → Kν)

and Γ(τ → Kπν), which together make up 68% of the total strange width. This indeed shifts the
Vus entry from τ decays in the right direction as shown in Fig. 3. For the sake of the argument, I
have in addition increased in Fig. 3 the value of Vud from Ref. [28] by 3 σ , anticipating the possible
status of CKM unitarity at the time of Chiral Dynamics 2018 . . . .

6
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0.215 0.22 0.225 0.23

Vus

æ Τ -> s inclusive, Lusiani CKM2014

æ K13 2015

æ KΜ2�ΠΜ2, Moulson CKM2014

æ CKM unitarity, Hardy�Towner 2015

Figure 2: Values for Vus using the various inputs discussed in the text. The red bar indicates the prediction
from unitarity with Vud taken from Ref. [28].

0.215 0.22 0.225 0.23

Vus

æ Τ -> s inclusive, ACLP 2013

æ K13 2015

æ KΜ2�ΠΜ2, Moulson CKM2014

æ CKM unitarity: Vud=0.9748

Figure 3: Compared to the previous figure, the value for Vus from τ decays is now from Antonelli et al.
(ACLP 2013) [29] and Vud = 0.97480(21) is bigger than the standard value [28] by 3 σ .

4. Charged pion polarizabilities

The γγπ+π− complex is an early example of NNLO CHPT. Since we are dealing here with
chiral SU(2), one expects good convergence: from scalar electrodynamics at lowest O(p2) to NLO
[30] and NNLO [31, 32]. This is indeed borne out by the calculations as exemplified by the total
cross section σ(γγ → π+π−) shown in Fig. 4.

The electric (απ ) and magnetic (βπ ) polarizabilities can be defined via the threshold expansion for
the differential cross section for pion Compton scattering γπ±→ γπ±:

dσ

dΩ
=

(
dσ

dΩ

)
Born
− αM3

π(s−M2
π)

2

4s2(sz++M2
πz−)

(
z2
−(απ −βπ)+

s
M4

π

z2
+(απ +βπ)

)
+ . . . (4.1)

with s = (pπ+ + pπ−)
2 , z± = 1± cosθcm.

At NLO in CHPT, electric and magnetic polarizabilities are equal. In addition to the loop
contribution, a single combination of SU(2) LECs 2l5− l6 enters, which is accurately known from
π → eνγ [2]. At NNLO the LECs l1, l2, l3, l4 (in one-loop diagrams) and three NNLO LECs con-
tribute together with one-and two-loop contributions. It turns out that the difference απ −βπ is not

7
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Figure 4: Successive orders of the total cross section σ(γγ → π+π−) taken from Ref. [32].

very sensitive to the NNLO LECs leading to the final result1 απ −βπ = 5.7± 1.0 [32]. The sum
απ +βπ ' 0.16 is much smaller but the relative uncertainty is bigger than for the difference. Most
experiments actually assume απ =−βπ in their analyses.

experiment απ −βπ

MAMI A2 2005 [34] γ p→ γπ+n 11.6±1.5stat±3.0syst±0.5mod

COMPASS 2015 (βπ =−απ ) [36] π−Ni→ π−γ Ni 4.0±1.2stat±1.4syst

theory

Fil’kov, Kashevarov 2006 [35] dispersive 13.0
(
+2.6
−1.9

)
Gasser, Ivanov, Sainio 2006 [32] CHPT 5.7±1.0

Table 5: Experimental and theoretical results of the past 10 years for the charged pion polarizabilities.

The experimental situation has been inconclusive for a long time, with large uncertainties
(απ−βπ ∼ 4÷53). For more details I refer to the plenary talk of Friedrich [33]. During the last 10
years two more high-precision experiments were performed. The result of the MAMI experiment
of 2005 [34] was incompatible with the chiral prediction for απ −βπ , but seemed to be supported
by a dispersive analysis2 soon afterwards [35].

The very recent COMPASS experiment at CERN [36, 33] has given a new twist to this long
story. Their result for απ−βπ (assuming απ =−βπ ) displayed in Table 5 disagrees with the MAMI
result and it is in excellent agreement with the chiral prediction. The chiral practitioner’s favourites
are marked in red in Table 5, bringing the longtime puzzle of the charged pion polarizabilities to a

1Polarizabilities are expressed in units of 10−4fm3.
2The dispersive method of Ref. [35] was criticized by Pasquini et al. [37].
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happy ending. It goes without saying that this success story should be confirmed by an independent
experiment.

5. Kaon decays

5.1 Semileptonic K decays

Since the last Chiral Dynamics Workshop several studies on K`4 decays have been undertaken
within the CHPT framework. In addition to investigating the K`4 form factors and extracting the
associated LECs of chiral SU(3), one gets access to the ππ threshold region and thus to the ππ

scattering lengths.
For the comparison of theoretical predictions with high-precision experimental data, isospin-

violating corrections became more and more important. In particular, to determine the ππ scat-
tering lengths from Ke4 data [38], it is essential to account for mass-difference corrections in ππ

phase shifts [39]. The S-wave scattering lengths from Ke4 data are then in excellent agreement with
the CHPT+Roy equation analysis [40].

A complete treatment of isospin violation must include radiative corrections. Although such
corrections are routinely taken into account in the experimental analysis by means of some Monte
Carlo program, a state-of-the-art CHPT treatment was missing until recently. Updating and correct-
ing earlier work [41], Stoffer has now provided the missing link [42]. In addition to the complete
isospin-violating one-loop corrections for K`4, the calculation is done with an arbitrary cut on the
photon energy for semi-inclusive K`4γ decays. The complete isospin-violating mass effects for
form factors are also included, reproducing in particular the corrections for the phase shifts [39].
The complete matrix element at NLO including all isospin-violating corrections of O(mu−md ,α)

can then be used by future K`4 experiments in their Monte Carlo programs.
In two recent papers [43, 44, 45], Bernard, Descotes-Genon and Knecht have extended the

analysis of mass-difference effects for the ππ phase shifts beyond the one-loop approximation.
Their starting point is the observation that the phase-shift difference measured by NA48/2 [38] can
be related to the theoretical expression [40] as

[δS(s)−δP(s)]exp = δ
S−P
Roy (s;a0

0,a
2
0)+δ

L=1
IB (s) (5.1)

where δ L=1
IB (s) is the one-loop correction [39]. Beyond one loop, δIB(s) will depend on the scatter-

ing lengths a0
0,a

2
0 in a nontrivial way so that Eq. (5.1) should in general be replaced by

[δS(s)−δP(s)]exp = δ
S−P
Roy (s;a0

0,a
2
0)+δIB(s;a0

0,a
2
0) . (5.2)

The dependence of δIB(s;a0
0,a

2
0) on the scattering lengths could therefore introduce a bias in

the extraction of a0
0,a

2
0 from the data. Of course, in the usual chiral expansion this dependence will

be hidden in loop contributions and LECs. Therefore, Bernard et al. set up a dispersive represen-
tation of δIB(s;a0

0,a
2
0) consisting of two parts [43]: a universal part involving only ππ rescattering

and a process-dependent part involving the form factors in the coupled channels. Refitting the
NA48/2 data for K±→ π+π−e±νe [38] with this dispersive representation, the two contributions
partially cancel to give rise to isospin-breaking corrections close to the one-loop case as shown in
Table 6.
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a0
0 a2

0 Ref.

0.221±0.018 −0.0453±0.0106 [43]

0.2220(128)stat(50)syst(37)th −0.0432(86)stat(34)syst(28)th [38]

Table 6: S-wave scattering lengths extracted from the NA48/2 data for K±→ π+π−e±νe [38]. The entries
in the second line are based on the dispersive analysis of Ref. [43], those in the third line are from the NA48/2
Collaboration [38] with one-loop isospin-breaking corrections [39] applied.

Very recently, Colangelo, Passemar and Stoffer have extended the NNLO calculation of K`4

decay amplitudes [46] by a dispersive treatment including resummation of ππ and Kπ rescattering
effects [47], thereby improving the perturbative treatment of ππ final-state interactions. With the
usual assumption of two-particle rescattering with S- and P-waves only (“reconstruction theorem”
[48]), they determine (most of) the subtraction constants by fitting to the data of the high-statistics
experiments E865 [49] and NA48/2 [50]. Isospin breaking is taken into account [42]. By matching
to CHPT at both the one- and the two-loop level, values for the NLO LECs L1,L2,L3 are determined
that are compatible with the global fit BE14 [4]. Unlike the CHPT calculation to NNLO, the
dispersive treatment can account for the measured curvature of the S-wave projection of the form
factor F as shown in Fig. 5.

Eur. Phys. J. C (2015) 75 :172 Page 37 of 65 172

5.4

5.6

5.8

6

6.2

6.4

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

F
s(
s,
s �

)

s/GeV2

S-wave of F

Dispersive fit to NA48/2 and E865
Projection of the (s, s�)-phase space

NA48/2 data
E865 data

Fig. 13 Fit result for the S-wave of the form factor F . The dispersive
description reproduces beautifully the curvature of the form factor. The
(s, s�)-phase space is projected on the s-axis, the plotted lines corre-
spond to splines through the (s, s�)-values of the two data sets

factors, hence the χ2 of the fit to the whole form factor data is
much better. Due to the resummation of final-state rescatter-
ing effects, we expect the dispersive representation to capture
the most important higher-order contributions and to render
the determination of the LECs more robust.

In combination with two-loopχPT, the treatment becomes
more difficult. The matching equations at NNLO relate the
subtraction constants to chiral expressions that contain the
O(p6) LECs Cr

i . The largest obstacle in a chiral treatment at
NNLO is the large number of poorly known Cr

i . In the dis-
persive treatment with NNLO matching, the same problem
occurs. It turns out that the determination of the NLO LECs
is still strongly affected by the choice of the Cr

i , a situation
known from direct χPT fits [45,50].

In order to alleviate this problem, we note that not all
choices of the input Cr

i lead to a good convergence of the
chiral expansion. In our dispersion relation, there appear nine
subtraction constants, which are gauge-dependent quantities.

Since the gauge transformation (74) is described by three
parameters, we can find six gauge-invariant linear combina-
tions of subtraction constants. For these linear combinations,
we require a good chiral convergence. We obtain this by mod-
ifying the fitting procedure as follows.

• We introduce nine additional fitting parameters, corre-
sponding to the contribution of the Cr

i to the subtraction
constants.

• We add to the χ2 nine observations of these parameters
corresponding to the input values of the Cr

i with a 50 %
tolerance for the linear combinations of the Cr

i .
• We add to the χ2 six observations of the total O(p6) cor-

rection to the gauge-invariant linear combinations of sub-
traction constants. The observation is zero ±5.6 % of the
O(p4) contribution (5.6 % corresponds to M2

η/(4πFπ )2).

With this setup, we are able to perform the NNLO matching
with a reduced dependence on the input values of the Cr

i . In
Table 6, we present the matching results at NNLO, using the
‘preferred values’ of [45] as input for the Cr

i .
The fit results with Lr

9 taken as input are shown in the
second and third column of Table 6. Here, the corrections
from NLO to NNLO matching for all three LECs are smaller
than the corrections between NLO and NNLO observed in
direct χPT fits. The larger uncertainties with respect to the
NLO matching are explained by the additional fitting param-
eters for the Cr

i contribution to the subtraction constants. If
we take as input for the Cr

i the resonance estimate of [50],
we obtain {Lr

1, L
r
2, L

r
3} = {0.65, 0.26,−1.79} · 10−3. With

the Cr
i input taken from the chiral quark model [49], we find

{Lr
1, L

r
2, L

r
3} = {0.49, 0.65,−2.44} · 10−3. We prefer the

BE14 input values for the Cr
i , because they lead to the best

chiral convergence and the best χ2 of the fit.
The fit results change quite drastically if we include Lr

9 in
the fit. These fit results are shown in the fourth and fifth
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Fig. 14 Fit results for the P-waves of the form factors F and G. The (s, s�)-phase space is again projected on the s-axis

123

Figure 5: S-wave of the K`4 form factor F . The dispersive description [47] accounts for the measured
curvature of the form factor.

5.2 Nonleptonic K decays

Since the last Chiral Dynamics Workshop in 2012, there have been no spectacular develop-
ments in the CHPT treatment of nonleptonic kaon decays to the best of my knowledge. In this
respect, the review of kaon physics in the Standard Model by Cirigliano et al. [51] is therefore still
up-to-date.
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Let me nevertheless mention two recent investigations of nonleptonic K decays discussed at
this Workshop even though they are not directly related to CHPT. Garron [52] presented the first
complete lattice calculation of K→ ππ with physical kinematics, opening the way for an ab-initio
verification of the ∆I = 1/2 rule and for extracting the parameter ε ′ measuring direct CP violation
[53]. The lattice value for ε ′/ε comes out substantially smaller than the experimental value [54]
but isospin-violating corrections [55, 56] still need to be applied.

A completely different, if somewhat unconventional explanation of the ∆I = 1/2 rule has been
proposed by Crewther and Tunstall [57, 58] assuming a QCD infrared fixed point.

6. η → 3π decays

The decays η→ π+π−π0,3π0 violate isospin. Electromagnetic contributions are known to be
small [59, 60], but they can be incorporated consistently [61, 62]. To a very good approximation,
the decay amplitudes are therefore proportional to the quark mass difference md−mu:

A(η → 3π) ∼ md−mu ∼ R−1 ∼ Q−2 , (6.1)

R =
ms−mud

md−mu
, Q2 =

m2
s −m2

ud

m2
d−m2

u
,

Q2 =
(

1+ ms
mud

)
R/2, mud := (mu +md)/2 .

From the chiral point-of-view, η → 3π decays are therefore a unique source of information
for extracting the light quark mass difference md −mu, little affected by electromagnetic effects.
Unfortunately, successive orders in the chiral expansion do not show any sign of convergence as
displayed in Table 7.

Γ(η → π+π−π0)/eV r

LO Osborn, Wallace 1970 [65] 66∗ 1.54

NLO Gasser, Leutwyler 1985 [66] 160(50)∗ 1.46

NNLO Bijnens, Ghorbani 2007 [67] 1.47

expt. PDG 2014 [54] 300(12) 1.48(5)

Table 7: Successive orders in the chiral expansion for the decay rate Γ(η → π+π−π0) and for the ratio r =
Γ(η → 3π0)/Γ(η → π+π−π0) in comparison with experiment. For the numbers with an asterisk Q = 24.3
(Dashen’s theorem [68]) has been assumed.

In addition, the CHPT amplitudes have problems with the measured Dalitz plot distributions as will
be discussed below. It has long been suggested that these problems have to do with the fact that
ππ rescattering is included only perturbatively, suggesting a dispersive treatment [63, 64]. Fig. 6
taken from Ref. [64] nicely illustrates the situation for the real part of the decay amplitude: while
the chiral corrections from LO to NLO are large, the dispersive effects are actually rather moderate.
Fig. 6 also indicates that the decay amplitudes (with or without dispersive corrections) deviate only
very little from the Adler zero [69] at s = u = 4/3M2

π as it should be for a chiral SU(2) prediction.

11
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•  Adler zero: the real part of the amplitude along the line s=u has a zero 

 
 

2.3  Subtraction constants 

Anisovich & Leutwyler’96  

Emilie Passemar MesonNet Meeting, September 29, 2014 26 Figure 6: Real part of the (properly normalized) amplitude M(η → π+π−π0) along the line s = u: LO
(dashed curve), NLO (dash-dotted) and dispersive amplitude (full curve). The figure was taken from
Ref. [64].

More recent developments to improve the chiral amplitudes with dispersion theoretic methods
are all (with the exception of a recent attempt to include also resonance effects [70]) based on the
so-called reconstruction theorem [48], incorporating ππ partial-wave discontinuities for ` = 0,1
only. The dispersive amplitudes are then matched to the CHPT amplitudes (mostly at NLO) to
obtain the ratios Q or R from the experimental rates. Since the rates cannot be predicted in the
dispersive approaches, the crucial tests involve the Dalitz plot parameters defined in Eqs. (6.2,6.3)
through an expansion around the center of the Dalitz plot for both charged and neutral modes,
especially in view of recent very precise experimental results. In most of the cases to be discussed
below, some of the Dalitz plot parameters are also used as input.

The Dalitz plot parameters a,b,d,α are defined via the expansions

|Acharged(s, t,u)|2 = N
(
1+aY +bY 2 +dX2 + . . .

)
,

|Aneutral(s, t,u)|2 = N (1+2αZ + . . .) (6.2)

where

X =

√
3

2MηQη

(u− t), Y =
3

2MηQη

(
(Mη −Mπ0)2− s

)
−1 , (6.3)

Z = (X2 +Y 2), Qη = Mη −∑i Mπ i .

During the past years, four groups have employed dispersive approaches to analyze η → 3π

decays.

1. Colangelo, Lanz, Leutwyler and Passemar [71, 72]

This is a modern update of the approach of Anisovich and Leutwyler [64], with final results
still pending. Some of the crucial features are:

• The Bern ππ phase shifts [73, 74] are used with effectively six subtraction constants,
which are constrained by data in the charged decay channel.
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• Electromagnetic effects are fully taken into account to NLO [62].

• To pin down the absolute magnitude, the dispersive amplitude is matched to the chiral
NLO amplitude for small values of s, t,u. The amplitude is compatible with the Adler
zero.

2. Schneider, Kubis and Ditsche [75]

These authors use a nonrelativistic effective field theory to two-loop accuracy that

• is well suited to study the dynamics of the final-state interaction and includes all isospin-
violating corrections.

• It yields relations between charged and neutral Dalitz plots.

• The rescattering effects lead to sizable corrections for the Dalitz plot parameters. The
approach offers an explanation why NNLO CHPT misses an important contribution to
the neutral Dalitz parameter α defined in Eq. (6.2).

3. Kampf, Knecht, Novotny and Zdrahal [76]

This approach uses an analytic two-loop representation with the following main features.

• The amplitudes contain six parameters that are fitted to the Dalitz plot distribution of
the charged decay mode.

• With these constants determined, the authors predict the parameter α for the neutral
mode.

• They match their dispersive amplitude to the absorptive part of the NNLO chiral ampli-
tude in a region where the differences between NLO and NNLO amplitudes are small.
In fact, this is so far the only attempt to match to CHPT at the NNLO level.

The result has been criticized by the Bern group [71, 72] because the fitted amplitude is quite
far away from the Adler zero.

4. Guo et al. (JPAC) [77]

This is the most recent dispersive analysis.

• The dispersive amplitude uses the Madrid/Cracow ππ phase shifts [78] with only three
subtraction constants.

• They fit to the experimental Dalitz plot for the charged mode from the WASA/COSY
Collaboration [79] and then predict the neutral Dalitz parameter α .

• The absolute scale is fixed by matching to NLO CHPT near the Adler zero to extract a
value for Q.

Three high-precision experiments have recently measured the Dalitz plot parameters, with
the greatest accuracy provided by the new KLOE results presented at this Workshop [81]. In
Table 8 I confront the experimental results with theoretical predictions, as far as available. The
experimental results for the Dalitz plot parameters a,b,d in the charged channel are consistent with

13
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each other and can therefore be averaged. The averages are clearly dominated by the KLOE results.
Comparing with theoretical predictions, the least one can say is that the data present challenges for
most of the theoretical approaches. In particular, NNLO CHPT has serious problems with the
parameters b and α . It remains to be seen whether the new set of LECs BE14 can improve the
situation.

−a b d α

WASA/COSY 2014 [79] 1.144(18) 0.219(19)(47) 0.086(18)(15)

BESIII 2015 [80] 1.128(15)(8) 0.153(17)(4) 0.085(16)(9) −0.055(14)(4)

KLOE 2015 [81] 1.095(3)(+3
−2) 0.145(3)(5) 0.081(3)(+6

−5)

my averages 1.099(4) 0.147(6) 0.082(6)

PDG 2014 [54] −0.0315(15)

NNLO CHPT [67] 1.271(75) 0.394(102) 0.055(57) 0.013(32)

NREFT [75] 1.213(14) 0.308(23) 0.050(3) −0.025(5)

KKNZ [76] −0.044(4)

JPAC [77] 1.116(32) 0.188(12) 0.063(4) −0.022(4)

Table 8: Experimental data from three recent high-precision experiments on the Dalitz plot parameters (6.2)
(charged and neutral modes). In the lower half of the table, the available theoretical results are shown for
comparison.

Finally, one can extract values for the quark mass ratios from the experimental rates. In Table
9 I collect the values for the ratios R and Q (6.1) together with N f = 2+1 lattice averages [13]. The
general tendency can be summarized in the following way. Since the Prague/Marseille group [76]
matches to NNLO CHPT, their values for R,Q are bigger than those from Refs. [71, 77] where the
matching was performed at the NLO level. The lattice values [13] are in between.

7. Conclusions

Chiral perturbation theory for light mesons is still strong and healthy after more than 30 years.
The main challenge for CHPT to understand the physics of the Standard Model in the confinement

NNLO CHPT [67, 82] CLLP [71] KKNZ [76, 83] JPAC [77] FLAG 2014 [13]

prel. (N f = 2+1)

R 40.9 [31.9]∗ 37.4(2.2) [32.2]∗ 35.8(1.9)(1.8)

Q [24.1]∗ 21.3(6) [23.1]∗ 21.4(4) 22.6(7)(6)

Table 9: Theoretical predictions for the quark charge ratios R,Q. The values without brackets are taken
directly from the publications. The values in brackets with an asterisk (without errors) were calculated using
the relation between R and Q in Eq. (6.1) and the FLAG value [13] for ms/mud .
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regime has been met successfully. This applies especially to chiral SU(2) where the longtime
puzzle of the charged pion polarizabilities has now been resolved, with an impressive agreement
between CHPT and experiment.

With chiral SU(3), there is still ample room for improvements. The abundance of low-energy
constants at NNLO is one major obstacle on the way to precision physics. A new global fit for the
LECs in the strong sector is a promising step towards improving the situation. With the new set of
LECs, NNLO CHPT and the most recent lattice results for the K`3 vector form factor at t = 0 are
now in excellent agreement, leading to a precise value of Vus.

The second main construction site for chiral SU(3) is the slow convergence of the chiral series
in some cases. The problem has been attacked by several groups with dispersive methods, both
for K`4 decays and especially for η → 3π where CHPT seems unable to account for the measured
Dalitz plot distributions even at NNLO. Although the dispersive approaches depend heavily on
experimental input for pinning down the subtraction constants, they can incorporate final-state
interactions more effectively than CHPT. In any case, the new very precise data for the η → 3π

Dalitz plot parameters constitute a challenge for all approaches.
The lack of evidence for new physics in the low-energy regime should not be held against

CHPT. After all, CHPT is in good company with LHC physics in this respect.
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