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Figure 1: (a) Leading-order diagrams f@iN scattering in chiral perturbation theory. Nucleons areotkeh

by full, pions by dashed lines. (b) Next-to-leading-ordégdams, depending on low-energy constants
c1-4. These diagrams capture the leading effedd(d232) resonance exchange. Crossed Born terms\and
exchange graphs are not shown explicitly.

1. Introduction

Pion—nucleon#N) scattering is one of the simplest processes to study chiral dynamics involv-
ing nucleons. At leading order (LO) in the chiral expansion, i.e., in theuesion in pion masses
and momenta, the scattering amplitude is given by the Feynman diagrams shagirilijr€sulting
in the well-known low-energy theorems (LETS) for tBavave scattering lengths, the amplitudes
evaluated at threshold [1, 2]:

MMy

%+ = 8r(my + M) F2 +0 (M), ag, = 0(M3). (1.1)

The isospin-odd scattering length is hence predicted solely in terms of théNdjgrand nucleon
(my) masses as well as the pion decay congtantvhile the isospin-even one is suppressed. The
strength of the Born term amplitudes (that do not contribute at thresholddiméearder) is given
in terms of the pion—nucleon coupling constgntvhich is related to the axial couplirgy by the
Goldberger—Treiman relatiog,= gamyn /Fyr, up to higher orders.

Already at next-to-leading order (NL@7(p?) in the chiral counting), theiN scattering am-
plitude depends on a list of low-energy constants (LECs), conventiodalipted byc; 4, which
are less readily determined from phenomenology. These NLO contribuéndgo be large: three
of the couplings&,_4) incorporate the leading low-energy effects of &{@232), the lowest-lying
resonant excitation of the nucleon; see also Fig. 1. As the mass gap isemaliny ~ 2My;, and
as theA couples strongly to thaN system, the numerical values of the NLO LECs are somewhat
larger than expected from naive dimensional analysis. To pin down Li&Sg accurately and con-
sistently is an important task also in view of many nuclear physics applicatioshoas in Fig. 2,
niN amplitudes constitute an important contribution to the two-pion exchange in macigoleon
scattering potentials, and determine the leading long-range three-nucteen f
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Figure 2: Contributions of pion—nucleon amplitudes to nucleon—eonl scattering (left) and the three-
nucleon force (right). The gray blob denotes-scattering-type subdiagrams.
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A further strong incentive to study pion—nucleon scattering derive® fts relation to the
pion—nucleoro-term o, defined via the scalar form factor of the nucleon
1

U(t)=m<N(p')|rﬁ(Ju+d_d)|N(p)>, =

om = 0(0), (1.2)

wheret = (p’ — p)2. Through the Feynman—Hellmann theorem [3, @}y determines the light-
guark content of the nucleon mass,

oMy
om
where we have already indicated the leading term in the chiral expansithisajuantity: it is
given in terms of the LE@;, which in turn should be fixed fromiN scattering. This is the leading
approximation to the Cheng—Dashen LET [5], which we will discuss in motaildeelow. The
o-term has garnered strong interest beyond the hadron physics comiimur@tent years, due to
its relation to the scalar couplings of the nucleon that are prerequisite éorséstent interpretation
of direct-detection dark matter searches [6, 7, 8].

O = M= = —4ciM2+ O(M3), (1.3)

2. Chiral perturbation theory and 7N scattering

It is well known that the extension of chiral perturbation theory (ChRTLLD, 11] to include
nucleons as massive matter fields is not without problems, in particular wbemds to including
loop corrections. In contrast to the Goldstone boson theory, in which al s@ales are small, and
naive dimensional counting works as long as a mass-independentrizgtidea scheme such as
dimensional regularization is used to calculate loop diagrams, the nucleorcomssiutes a new
mass scale of the order of the chiral symmetry breaking soales Ay = 4nF; ~ 1GeV. Loop
integrals pick up contributions from momenta of the order of the nucleon miébshe result that
loops that should be suppressed in the chiral expansion in fact relwertaver-order coupling
constants [12]. Various schemes have been used to overcome thishproble

e The heavy-baryon expansion [13, 14] regards the nucleon ay,heav-relativistic fields;
nucleon momenta are decomposed into a large component proportional tectaemns ve-
locity, plus small, residual momenta of the order of the pion mass. Similarly to Feaank
effective field theory, the non-relativistic expansion eliminates the mass tihe nucleon
propagator, which re-enters parametrically in inverse powergrag torrections, which can
be constructed systematically on the Lagrangian level [14]. As a resulg-fotd/ expansion
is performed, with a unified power counting schepyé\, ~ p/my.t

e The infrared regularization (IR) scheme [15, 16], in contrast, is a msthyfeovariant pre-
scription, in which loop integrals are divided into an infrared singular argjalar part. The
infrared singular part contains all non-analytic loop effects and ohapse power count-
ing rules, while the regular part can be expanded in a polynomipf andM2 and can be
consistently reabsorbed into a redefinition of the counterterms.

1An alternative counting scheme is typically used\NiN applications, where the generic breakdown segjds
assumed to be smaller, and recoil corrections are deferred to higheesdy countingy/my ~ (p/Ap)?.
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e In the IR prescription, regular parts of loop integrals are subtracted ledehy which has
the disadvantage of inducing unphysical cuts outside the low-energnrgl]. This can
be avoided in the extended on-mass-shell (EOMS) scheme [17, 18 whby the explic-
itly power-counting-violating terms, expanded as a polynomial to the negessder, are
omitted, thus preserving the correct analytic structure of the relativisticdoaphs.

Ultimately, these regularization schemes of baryon ChPT, which have alldm#ied to analyze
niN scattering, should be equivalent (up to incomplete higher orders) wipied in “safe” kine-
matical regimes, away from branch cut singularities. In contrast, it has Sleown that a naive
heavy-baryon representation of triangle loop graphs does not iggnirethe complete low-energy
region [16]; e.g., the spectral functions of nucleon electromagnetic factors show the wrong
threshold behavior due to the heavy-baryon approximation of anomaloeshtitds [19], while
these are correctly reproduced in covariant schemes such as the [ROn

Apart from the use of various loop regularization schemes, differdéftTebased studies of
niN scattering also differ in the treatment of thé1232) resonance. As we explained aboye,
contributions enhance some of the LECs significantly; e.g. the contributiansi@s determined
from the resonance saturation hypothesis can be as large as [21]

b= =2¢; ~38GeV, (2.1)

which slows down the convergence of the chiral expansion significdhtigs therefore been pro-
posed to include th& degrees of freedom dynamically in baryon ChPT [22], which is also jldbus
with regards to the largBk limit, in which the nucleon and th& become mass-degenerate. Uni-
fied counting schemes that have been suggested for this combinedveftbetdry include the
expansion [23], in whiclp, M, andmy — my are all counted ag’(¢), and an alternativé expan-
sion [24], in whichp, My ~ &(8), butmy — my ~ ¢(3Y/?) at low energies or near threshold, such
that loops includind\ propagators are effectively shifted to higher orders.

A significant number of studies over the last few years has pursuedrttegy to fix N
LECs by fitting to existing phase-shift analyses: the dispersion-themsgebKarlsruhe—Helsinki
analysis [25, 26], the GWU/SAID solution that is continuously updated wittetiest data [27, 28],
in some cases also the analysis performed by the Zurich group [29]. R$ Gbeys unitarity in
a perturbative sense only, amplitudes are usually unitarized by droppnigniginary part and
reconstructing the phase shift from the real part only according tordsepption

al al

o(s) = arctan(8n\/§Ret(s)) ~ 81,5
wheret(s) is a generic partial wave, ampthe center-of-mass 3-momentum. The number of LECs
to be fitted at the different chiral orders is fograt ¢ (p?), four (linear combinations ofoiT at
0 (p%) (plus one additional constard_lg, that parametrizes the Goldberger—Treiman discrepancy
in cases where the pion—nucleon coupling was not assumed to be firedjy@ (combinations
of) g at ¢ (p*), which corresponds to complete one-loop order. Studies of this kinthrpexd
over the last five years only, include IR @(p?) [30], EOMS to¢(p?) and 0(6°) [31], EOMS
to 0(p*) and0(6%) [32] (the amplitudes including th& calculated in this study may violate cer-
tain positivity constraints inside the Mandelstam triangle [33]), heavydma@hPT tod (p*) with

Ret(s), (2.2)
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NN counting scheme [34], an analysis of fitting the amplitudes of [34] to actusdrehbles in-
stead of phase shifts [35], and &fp®) amplitude withN /D unitarization and CDD poles for the
A as well as theN(1440) [36]. Fit ranges typically extend up to aboys ~ 1.13GeV without,
and 120GeV with theA included explicitly. In most cases, tlieterms extracted correspond to
the phase-shift analyses used as input: valuesdjge~ 45MeV are derived from fitting to the
Karlsruhe—Helsinki analysis, whilem ~ 60MeV is typically obtained from the GWU/SAID so-
lution. Reliable estimates of the uncertainties associated with these valuediandt difi particular
in view of the extrapolation of the chiral amplitudes from the scattering into tlysigdl region.

We will therefore follow a different strategy in the following, and insteadusing ChPT
directly, analyzetN scattering using dispersion theory, in the particular form of Roy—Stemqex-e
tions. We will come back to the issue of matching to ChPT in Sect. 8 only.

The following presentation relies heavily on our original article [37].

3. Roy-Steiner equations forrtN scattering

In recent years, it has become apparent that the predictive povesiraf symmetry can be
vastly increased by combining ChPT with dispersive techniques, whidbieapalyticity to arrive
at a representation that relates the amplitude at an arbitrary point in the egoigsie to an integral
over its imaginary part. While the latter can be constrained by the respeciitagity relation,
convergence of the dispersive integral often requires a certain nmuohlaepriori undetermined
subtraction constants that, in turn, can frequently be pinned down by mgtthi@hPT. Once
the subtraction constants are fixed, a dispersive representation ggdhiel ideal framework to
reliably perform an analytic continuation into the complex plane, which becofesmdamental
importance for broad resonances situated far away from the real axis.

In particular, formr scattering, the use of Roy equations [38] has led to a determination of
the low-energyrtrt scattering amplitude with unprecedented accuracy [39, 40]. They éamet
from a twice-subtracted fixetdispersion relation, where tlelependent subtraction constants are
determined by means sf~ t crossing symmetry, and performing a partial-wave expansion. This
leads to a coupled system of partial-wave dispersion relations (PWDR#g)efarrt partial waves
t}(s) with isospinl and angular momentuth

th(s) = Sy(s) + ZOJZ / dgKl (s ¢)Imth (&), (3.1)

4M2

whereKj'J', are known kinematical kernel functions and the scattering lengths—thdrerlyara-
meters—appear in the subtraction ter@s). In addition, assuming elastic unitarity

i6}(s) _ 2
m(9 =oEREP §e= S o9=y1- T @2

S
(3.1) translates into a coupled integral equation for the phase §51i|ﬂtmmselves.
An important issue is the range of validity of the Roy equations. While the cgewee of
the fixedt dispersion relations is guaranteed fortatt 4M2 [41, 42, 43], the reduction to partial
waves imposes further constraints on the domain of validity of the system. Aier wiafact, the
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partial-wave expansion of the imaginary part in the dispersive integnakcges only for scattering
angle< that lie within the large Lehmann ellipse [44]. Due to the finite domain of validity, tne R
equations cannot be used up to infinity. Above a certain energy, edfesras the matching point
Sm, input from experiment for the imaginary parts of the partial waves isireduso that in practice
the equations are solved between thresholdsand-urthermore, the partial-wave expansion will
be truncated at a certain angular momentuamd higher partial waves treated on the same footing
as the lower partial waves abosg.

Unfortunately, in the case agfN scattering, a full system of PWDRs has to include dispersion
relations for two distinct physical processad| — nN (s-channel) andtr — NN (t-channel), and
the use o6« t crossing symmetry will intertwing- andt-channel equations, which hampers the
use of fixedt dispersion relations for this system.

Roy-Steiner (RS) equations are also a set of coupled PWDRs that, irasotdrT Roy
equations, are derived from hyperbolic dispersion relations (HD&H) vhich automatically re-
late the different channels in tleN system. In close analogy to similar analyses ofritg39], the
1K [46], or theyrt [47] system, solving the RS equations X, in particular once combined with
the pionic-atom constraints on the scattering lengths [48, 49], can pravidmarkably precise
representation of thaN amplitude at low energies.

The construction of a complete system of RS equationaffbscattering has been presented in
detail in [50]; see also [51, 52, 53] for partial results. The startingtpoitne derivation is provided
by HDRs for the invarianttN amplitudes, which, in combination with the pertinent partial-wave
expansions as well as unitarity relations, are used to derive a closetnsgs PWDRs that fully
respects analyticity, unitarity, and crossing symmetry. Subtractions daped at the so-called
subthreshold poirgd= u, t = 0, which proves convenient for the matching to ChPT and for the ex-
trapolation to the Cheng—Dashen point [5], and thus for establishing l&t@reto o, by means
of a low-energy theorem [5]. In fact, it has been pointed out preWoimst a reliable extrapo-
lation to the subthreshold region requires additional input front-ttieannel (rrr — NN) partial
waves [54, 55, 56], a requirement that is straightforward to comply with énRBE formalism,
as HDRs by construction intertwine all physical regions. In the end, batls-tandt-channel
equations will involve the subtraction constants andrtNecoupling constant as free parameters,
see [50]. In this way, the-channel RS equations read [45]

£l (W) =N, (W) + 71T/dt’ Z {G|J(W,t’) Im £2(t') + Hiy (W,t') Im £ (t')} (3.3)

tn

17, .2
+—/dw’ z {K,',,(W,W’)Imf,',+(W’)+K|'|,(W,—W’)Imf('|,+1)_(W’)},
"W+ =y

where due tdG-parity only even/odd contribute for isospin = +/—, respectively. The kernels
Kl (W,W), G3(W,t), andH;(W,t) are known analytically, anM', (W) denotes the partial-wave
projections of the pole terms.
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w7 scattering
phases 6% (t)

higher partial waves t-channel partial waves f(t) high-energy region
Im f>7m (¢ < t,) solve RS (MO) equations for J < J,, and ¢ < ¢, Im f{(t > ty)

e

wN coupling constant,
inelasticities for subthreshold parameters
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Im fé>lm)i(s < Sm) solve RS equations for | <[, and s < s, Im fL (s > sm)

Figure 3: Solution strategy for RS equations fiN scattering. Thes- andt-channel partial waves will be
solved for up to angular momenita = 1 andJy, = 2, respectively. Figure taken from [37].

For thet-channel partial-wave projection, the correspondispannel RS equations are [50]

. 17 , , . :
() =N (t) + E/dt/z {K}J,(t,t’)lm () + K2y (t,t") Im 7 (t’)}
t J

17 2 .
+n/0\N’A{GM(t,W’)Im f€'+(W’)+GM(t,—W’)Imf('£+1)7(W’)}, (3.4)
W, =

and similarly forf? except for the fact that these do not receive contributions frdnin addition,
only even or odd)’ couple to even or odd (corresponding té-channel isospity = 0 or Iy = 1),
respectively, and only highérchannel partial waves contribute to lower ones.

Contrary to thes-channel, below the first inelastic threshold, thehannel unitarity relations
are linear inf?

Im £2(t) = o"(t} (1)) F(0), (3.5)
from which one can infer Watson'’s final-state interaction theorem [3&{ing that (in the elastic
region) the phase df! is given by the phaséJ" of the respectivetrt scattering partial Wavlét.

The strategy for the solution of the RS equations is outlined in Fig. 3: is-ttennel, the
six S and P-wavesf|,, with | = + for the isospin index, orbital angular momentdimand to-
tal angular momentunj = || £ 1/2|, are considered dynamically below the matching psint
whereas the imaginary parts of higher partial waves fos,alhe imaginary parts of th& and
P-waves aboves,,, and, potentially, inelasticities belog, are required as input. In practice, we
will choose the matching point at its optimal valsg= (1.38 GeV)? as argued in [50]. In contrast
to the sixs-channel amplitudes, there are only thR@ndP-waves in the-channel,f?, with total
angular momenturd and the subscript referring to parallel/antiparallel antinucleon—nucleliz: h
ities. The equations for titechannel partial waves take the form of a Muskhelishvili-Omnées (MO)
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problem [58, 59], whose solution requires—in addition to higher parti@esand the imaginary
parts above the matching poipt—input for therrr phase shifts.

Once thet-channel problem is solved, the resultinghannel partial waves are used as input
for the s-channel problem, which then reduces to the form of conventimmRoy equations.
Eventually, a full solution of the system can be obtained by iterating this guveauntil all partial
waves and parameters are determined self-consistently. In practicellyidl interdependence
proceeds via the subtractions constants, so that the need for an itpratreelure can be avoided
if the corresponding terms are included explicitly in thehannel fit.

4. Solutions of thet-channel ands-channel subproblems

Given that data in thé-channel reactiormrr — NN become available only above the two-
nucleon threshold, the solution of thehannel equations is subject to an additional complication
that is related to the large pseudophysical region in this reaction. Thuaipigudes in the pseu-
dophysical region; <t <ty required for thet-channel integrals need to be reconstructed from
unitarity. While for every partial wavert intermediate states generate by far the dominant contri-
bution, intermediate states besidesbecome relevant in the unitarity relation around 1 GeV, most
notably in theSwave, whereKK intermediate states account for the occurrence offgi@80)
resonance, but also for all partial waves where inelasticities from thehdnnel start setting in
before the two-nucleon threshold is reached. An explicit coupledreidramework is only feasi-
ble if the correspondin§-matrix is known sufficiently accurately, a requirement that in the present
application is only met for them/K_K Swave system. For this reason, we adopt a single-channel
framework forP- andD-waves, estimating the impact ofdnelasticities by appropriate variations
of the input. Similarly, we include thK channel explicitly in thes-wave, while accounting for
effects from higher channels in the uncertainty estimate.

In the single-channel approximation, where onty intermediate states are considered in the
unitarity relation, the MO solution fof? (t) is given in terms of the Omnés function [59]

tm ,
Q;(t) = exp{;/dt/t/?;(t_)t) }’ 4.1)
tn

which is a function of thertrr phase shiftd;(t) for angular momentund (and isospin @1 for
even/odd]) only. Abovety, further information about absorptive parts is required. However, in
the practical application the uncertainties belgiare much larger than the contribution from the
imaginary part above, so that we will drop their contribution everywhere.

In the two-channel approximation thret — NN and KK — NN Swaves f0(t) and h (t)
fulfill the unitarity relation

fO(t
Imf(t) =T*(O)Z(Of(t), ft)=1 , +§ ) . (4.2)
i
The solution of this problem is still accessible with MO techniques when the Ofanégon is
replaced by an Omnés matrix [60, 61], which in general cannot be givelosed form but has to

be determined numerically for a givArmatrix.
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According to Fig. 3 the solution of the full RS system requires an iterationdmgs andt-
channel. However, it was shown in [50] that by far the dominant relaogipetween the subsystems
proceeds by means of the subtraction constants, while the sensitivity bthanel solution on
the precise input used for theN partial waves was found to be very small. Therefore, in the
end the accuracy that can be reached forttohannel amplitudes is limited by the remaining
uncertainty in the subthreshold parameters as determined from the iterasedli@@n, and effects
significantly below that threshold can be neglected. For this reason, tagdtecan be organized
more efficiently in practice by solving thiechannel system once with reference values for the
subthreshold parameters, and then including the corrections to this sfawoiimgsolution directly
into the solution procedure for treechannel equations. We use the subthreshold parameters from
the KH80 solution [25, 26] as our reference point and express theatmns in terms of

AXE = ann—ann!KHgo, X € {a,b,d}. (4.3)

The results for the imaginary parts of thehannel partial waves when the subthreshold pa-
rameters are fixed at KH80 values are depicted in Fig. 4. We choose thieimggpoint ad,, = ty.

In general, for the evaluation of tteechannel integrals we use the phase shifts from [27]. For the
Swave, we take thetrr phase shift and inelasticity up tgto = 1.3GeV from the Roy-equation
analysis of [62] and therrr — KK partial wave from RS equations [46]. T\ coupling constant

is fixed atg?/(4m) = 13.7 [48, 49], theKN partial waves are taken from [63], and the hyperon
Born terms are evaluated with the couplings from [64]. The main uncertaiggmrsrated by the
fact that around B GeV inelasticities from # intermediate states start to become relevant, so that
a two-channel description is not strictly applicable any more. For the catiomuof the phase
shifts abovety we consider two extreme cases: first, we guide the phase shifts smoothty to 2
abovety (motivated by the asymptotic behavior), and second, we keep the phiftsecehstant,
with the results represented by the solid and dashed lines in the first gdfigl d, respectively.
The variation between these two curves is indeed the largest systematitaimygefor instance
much larger than the effect of switching off théN input altogether [65], and will be propagated
accordingly in thes-channel error analysis later.

For theP-waves, the largest uncertainty is again generatedtipdlasticities, which manifest
themselves irp’ and p” resonances that have a substantial branching fractiom.tdrtorder to
estimate their effect we follow [66] and use a phase shift constructecimasway as to reproduce
the p’ andp” in the pion vector form factor in an elastic approximation. The results fairfif)
with (solid lines) and without (dashed lines) these resonances built inharensin the second
row of Fig. 4. The effects are indeed restricted to the energy regioveabGeV, so that for the
error propagation to the-channel solution the effects are negligible compared to the errors in the
subthreshold parameters. The same holds true for the intrinsic uncertairttiestrt phase shift:
using the phase shifts from [40] or [62] produces only tiny differsringhep-peak.

TheD-waves are dominated by ttig(1270 resonance, which has a 15% inelasticity to the 4
andKK channels. One way to estimate the potential impact of these inelasticities is taerdmac
it phase shift in the MO solution by the phase of tirepartial wave. The former corresponds to
the solid, the latter to the dashed lines in the third row of Fig. 4 (we use phéisarghinelasticity
from [40]). The effect is again quite moderate and does not need toopagated to the-channel
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Figure 4: Imaginary parts of thé-channel partial waves with KH80 subthreshold parametéhe black
solid (red dashed) line refers to our central solution (tbmishant input variation as described in the main
text), while the black crosses indicate the results fron}.[E&ure taken from [37].

solution. However, we note that tHe(1270 resonance itself plays an important role in the inter-
play between the- andt-channel RS subsystems: without including th€L270) in thet-channel

10
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D-waves, we could not find an acceptable solution ofstishannel equations.

In view of this surprising role of thé»(1270), one may obviously wonder about the impact
of yet higher partial waves. The first resonance in fheaves is theps(1690), at significantly
higher energies than the(1270. Moreover, it is predominantly inelastic with a 70% branching
fraction to the 4t channel, so that an elastic treatment becomes difficult to justify. However, to
get a rough estimate of the expected size ofRh@aves, we constructed dnwave phase shift
by matching the parameterization from [40] to a Breit—Wigner description op(#690), with
Breit—Wigner parameters taken from [67] and results shown in the lasbféug. 4. Indeed, we
find that theF-wave contribution is much smaller than tBewave counterpart, even to the extent
that the effect can be safely absorbed into the uncertainty estimate altogéttien that due to
the inelastic nature of thes(1690 our calculation of thé--waves is less rigorous than that of the
lower partial waves, we will indeed quote central resultsJef 2, and only include th&-waves
in the error analysis.

Once thd-channel equations are solved, the structure oktbieannel problem resembles the
form of mrr Roy equations, and it should be amenable to similar solution techniques. Jibédema
can be summarized in such a way that the phase shifts at low energieshé&ai threshold to the
maximum allowed matching point @, = 1.38 GeV, are represented in suitable parameterizations
whose free parameters, together with the subtraction constants, amideteby minimizing the
difference between the left-hand side (LHS) and right-hand side (RHS)3),

Ref/3 (W) —F [1/2] (W)

N
Aés = ) (4.4)
éi le Ref/s (W)

The information required to solve the BR®hannel equations is summarized in the flowchart
of Fig. 3. With respect to the-channel input, in addition to th& andP-wave inelasticities, we
have to include the imaginary part 8f andP-waves abov&\j, as input, as well as the imaginary
parts of thel > 1 partial waves above theN thresholdW,. In the regionW <W, = 2.5GeV,
we will use the solutions of the Karlsruhe—Helsinki (KH80) [25, 26] arel BWU/SAID [27, 28]
PWAs as input. The effect of taking one or the other will be consideredsasirce of uncertainty.
In addition, the significance of higher partial waves decreasesaseases due to the centrifugal
barrier. For our central solution we sum up all partial waves ulg.ip= 4, while the difference
to Imax = 5 is taken as an indication for the truncation error in the partial-wave eipaasd will
be included in the final uncertainty estimate. AbdVe= 2.5GeV we consider the Regge model
from [68] based on differential cross section and polarization datadfwardrniN scattering.

With respect to thé-channel contribution, a solution to (3.3) requires information on the
imaginary parts of ali-channel partial waves. We use the solutions of the-BiSannel subproblem
discussed above as input. The role of revaves will be included only as a source of uncertainty,
as will be the effect of the different ways to perform the continuation e&wave phase shift in
the region abovg/tp = 1.3GeV.

In addition, we found that the solution is stabilized substantially wherstvave scattering
lengths are imposed as constraints on the system instead of trying to predicfrdm the RS
solution. Since the scattering lengths are already known very precisetygdionic atoms [48, 49],

a prediction from the RS solution, if it could be extracted in a reliable mannalt,atould be
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extremely unlikely to be able to compete in accuracy. Therefore we imposaraolutions the
scattering length values [49, 69, 37]

ag’ = (1698+2.0) x 10°M;,  aY? = (—86.3+18) x 10 M. (4.5)

As the starting point for the minimization, we use KH80 values for the subtblgégtarame-
ters, and the GWU/SAID solutions for s-channel phase shifts. In éodavestigate to what extent
these equations are fulfilled for the SAkchannel amplitudes, we compare the LHS and RHS
of (3.3) before starting the minimization in Fig. 5. This figure shows that thateans are fulfilled
in the threshold region (except for ti8g1-wave), while deviations emerge at higher energies in
nearly all partial waves, most notably in tRg; andPs;.

The minimization of (4.4) provides us with a new set of subthreshold parasrestelS- and
P-wave phase shifts. The results for the LHS and RHS ofsthkannel RS equations after the
fit, also shown in Fig. 5, demonstrate good agreement, only folSthevave small deviations
are still perceptible close td4,. In addition, Fig. 5 shows that only for tH&waves there is a
sizable change between the new solution and the GWU/SAID one. FBrilaves, the agreement
between LHS and RHS of the Rschannel equations is almost entirely due to the change of the
subthreshold parameters. This result justifies the approach alreadyuicgis above: a solution
of the full RS system of equations can be achieved by including the depeadaf tha-channel
results on the subthreshold parameters explicitly in the minimization of (4.4) eolgcting their
weak dependence on teehannel input, which, in addition, changes little with respect to the SAID
values considered in the first place.

5. Results for low-energy phase shifts and subthreshold pameters

The previous results show how to obtain a consistent solution of-thad s-channel sub-
systems, by including the dependence ofttobannel partial-wave solutions on the subthreshold
parameters explicitly in the-channel fit. We have performed a full error analysis, where the un-
certainty estimates include a number of effects [37]: first, since the RSieqgsiare valid only
in a finite energy range below the matching point and only a finite number télparves are
included explicitly in the solution, we vary the input for the matching condition el & for the
energy region above the matching point and higher partial waves, kgdldiag different partial-
wave analyses and truncations of the partial-wave expansion. Furtiegwm vary the input for
the 7N coupling constant withim?/(4m) = 13.7(2) [48, 49] and investigate the sensitivity to the
parameterization of the low-energy phase shifts used in the solution. Geweralso observed
that the RS equations are more sensitive to some subthreshold parameteoghdra. To ac-
count for this effect, we generate a set of solutions correspondinffeceat starting values of the
X2-minimization, while imposing sum rules for the higher subthreshold parameteisook the
observed distribution as an additional source of uncertainty. Third,ragagate the errors in the
scattering lengths, which crucially enter as constraints in the minimization, to shésréor the
subthreshold parameters.

The corresponding results for the real parts of¢tehannel partial waves are plotted in Fig. 6.
The resulting subthreshold parameters are given in Table 1, comparesl k3180 values. The
comparison between them reveals fair agreement, all of them lie withivh the only exception

12
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Figure 5: LHS and RHS of the RS equations for ﬁ’g The red solid curves indicate SAID results [27, 28].
Red dashed lines correspond to the RHS of the RS s-chanral@wgiwhen SAIB-channel amplitudes [27,
28] and KHB80 [25, 26] subthreshold parameters are congid@&lack solid and dashed lines correspond to

the LHS and RHS of RS equations after the fit. Figure taken {&h

of dy,. We also keep track of the correlations between subthreshold paranobtaising a 13« 13
covariance matrix that encodes uncertainties and correlations of thebft8eshold parameters,
which will be relevant for the matching to ChPT.

Once the subthreshold parameters and their covariance matrix are finalizedn be the
uncertainties of the-channel partial waves. They cover both the systematic errors akesbwidh
the inelastic input and therr phase shifts, as well as the subthreshold-parameter errors. The
systematic errors are deduced from the curves depicted in Fig. 4, whosad is interpreted as a
full 10 band, to be attached around the central solution. For the propagatioa sxthreshold-
parameter errors we also take into account their correlations, whichtioyar play a key role for
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Figure 6: Final errors bands for theN phase shifts. The dashed lines indicate the central cuRigsire
taken from [37].

fi and fﬁ. We combine both effects by adding them in quadrature, leading to the résulle
imaginary parts plotted in Fig. 7.

For completeness we also show the results for the real parts, see Figa® frahm theS-wave
all partial waves are strongly dominated by the Born terms close to threshiodde they take a
large (but finite) value that would overshadow any structure in the reraabfdthe amplitude if
included in the plot. For this reason, the scale is cut off much earlier, ifagws the part of the
partial waves where the respective resonances occur. In gewerihd that deviations from the
KH8O0 results are at a similar level as already observed for the imaginets; péth error analysis

performed in the same way as in Fig. 7.
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RS KH80
dgo[M;1]  —1.3614+0.032  —1.46+0.10
dj,M;3  1.156+0.019 112+0.02
dg; M3 1.155+0.016 11440.02
dj,[M;°  0.1964+0.003  Q0200-+0.005
d;[M;°  0.18540.003 Q174+0.01
dg»[M;°%] 0.0336+£0.0006 0036 0.003
doo M2 1.411+0.015 15340.02
dp[M;% —0.15940.004 —0.167-+0.005
do;[M;#  —0.1414+0.005 —0.134-+0.005
bioM;3] —3.455+0.072  —3.54+0.06
boo M7?] 10.49+0.11 1036+0.10
b;,[M74  1.000+0.029 108+0.05
by M7%]  0.208+0.020 024+40.01

Table 1: Subthreshold parameters from the RS analysis in companighrthe KH80 values [25, 26]. Table
taken from [37].

6. Consequences for theiN o-term

The Cheng-Dashen LET [5, 70] relates the Born-term-subtractedaisosimplitude evalu-
ated at the Cheng—-Dashen pdint= 0,t = 2M2) to the scalar form factor of the nucleon, evaluated
at momentum transfer= (p' — p)2 = 2M2,

D" (0,2M%) = 0(2M7) + L, (6.1)

whereAr represents higher-order corrections in the chiral expansion. Tdwsections are ex-
pected to be very small: the non-analytic terms agree at full one-loop [gftier2], so that, based
on theSU(2) expansion parameter, the remaining effect would scal@Vggny,)om ~ 1MeV.
Here, we use the estimate [71]

|AR| < 2MeV, (6.2)

derived from resonance saturation for #ép*) LECs.
In practice, the relation (6.1) is often rewritten as

o = 0(0) =24 +Ap — Ay — AR, (6.3)
with correction terms

N =0(2M2) —om,  Dp=D'(0,2M2) ~Z4,  Zg=F2(dgy+2M2dy). (6.4)
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dgo dfy do; d3 df dgy doo dio doa bso Bog bio Doy

dgo 1 -077 -051 -043 -039 -030 -034 043 046 037 -0.08 —-0.39 014

dfy 1 08 048 053 058 016 -040 -064 —048 006 056 —0.21
de; 1 059 068 090 008 -055 -071 -067 004 058 -024
d 1 097 064 014 -035 -079 -063 001 072 -029
d 1 067 -004 —026 -079 -060 001 078 —0.28
de 1 013 -073 -075 -083 006 047 -022
doo 1 -050 001 -023 004 -011 —0.04
dio 1 061 08 -015 -005 021
do 1 08 -009 -055 041
bio 1 -010 -042 020
boo 1 -020 034
by, 1 018
boy 1

Table 2: Correlation coefficients for the subthreshold parameters the RS analysis [37].

Ag; measures the curvature in the scalar form factor, whijeparameterizes contributions to the
niN amplitude beyond the first two terms in the subthreshold expansion. As sh¢naj, although
these corrections are large individually due to strong rescattering in thins0 rirt S'wave, they
cancel to a large extent in the difference. For the numerical analysishvese [74, 65]

Ao — Ay = (—1.840.2) MeV. (6.5)

The crucial remaining challenge thus consists of determining the subthitgsrameters to suf-
ficient accuracy. Based on (6.1) the RS results for the subthresh@thpters translate immedi-
ately to a corresponding value ofy. To illustrate the dependence of tbheterm on the scattering
lengths used as input to the solution, we expagtinearly around the central values and find

Sq=(57.9+0.9)MeV + Zc|sAa{;+, Cij2=024MeV,  c3,=0.89MeV,  (6.6)
whereAa'g‘Jr gives the deviation from the scattering lenghts extracted from hadromitsatounits
of 103M;;1. Already this linearized version producgs = (46 4) MeV if the KH80 scattering

lengths are used, and the agreement with the original KH80 vgjue (50+ 7) MeV improves
further in a full solution. In contrast, our central solution correspdnds

>4 = (57.9+1.9)MeV, (6.7)

and thus to a significant increase compared to the early estimates.
Including also isospin-breaking corrections [75, 76, 77], the firalltg78]

o = (59.1+3.5)MeV, (6.8)

does amount to a significant increase compared to the “canonical vdlugjo~ 45MeV, al-
though already £ MeV are due to new corrections to the LET (and there®@MeV from isospin
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Figure 7: Final results for the imaginary parts of the&ehannel partial waves, with error bands including
both uncertainties in the subthreshold parameters and endut. The black crosses refer to the results

from [26]. Figure taken from [37].

breaking). The remaining increase of nearly 10MeV is dictated by expetintge new scatter-
ing lengths from pionic atoms determine the position of ¢hterm on the curve approximately
described by (6.6).

As discussed in Sect. 2, tleeterm has also been extracted freiN phase shifts using ChPT
atone loop [79, 80, 32], partly finding central values that are compatiitte(6.8). All the (disper-
sive) relations that constitute the Cheng—Dashen LET used in the extr&ctinrithe RS solution
are fulfilled by the chiral representation, too, albeit only in a perturbatag In particular, one
implicitly needs to extrapolate from the physicathannel to the subthreshold region. Based on
the analysis performed up to here, we point out that the chiral one-kmesentation is likely
problematic for a precision determination of tbreterm. It is well-known that it does not pro-
vide sufficient curvature to the scalar form factor of the nucleon [EBfilarly, the quantityAp
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Figure 8: Final results for the real parts of thvehannel partial waves, with error bands including both un-
certainties in the subthreshold parameters and the MO.ifljet black crosses refer to the results from [26].
Figure taken from [37].

is severely underestimated [31]. Therefore, the one-loop repréisentd the 7N scattering am-
plitude does not describe the subthreshold region very accuratelyxtiiaeteon of theo-term is
enabled only by the large cancellationdp — Ay as described above. Furthermore, tfedhannel
D-waves including thef2(1270 resonance are an essential ingredient to a consistent solution of
the RS system—omitting its contribution leads to a significantly laoyéerm. Thet-channelD-
waves of the chiral one-loop representation, however, are real: isrggoarts will only begin to
contribute at two-loop order. Hence, the large modifications induced b¥,ti€70 are part of
the uncertainties ignored at one loop. The solution to this problem lies in thef tise RS equa-
tions for the momentum dependence of tii¢ amplitude. The convergence of the chiral series as
an expansion in powers of the light quark masses can be studied saht#ggas we will see in
Sect. 8.
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7. On the strangeness content of the nucleon

The N o-term can also be related to the mass shift in the nucleon due to stranges,quark
ms(N|sgN). For that, one usually considers the so-called strangeness frgcten by

M (N|Gu+dd—253N) o 2(N|S§N)

™ = o Ty "1y YT NGurddNy

(7.1)

The leadingSU(3) breaking is generated by the operator — ) (Gu+ dd — 259 so thatdp can
be expressed through baryon mass splittings

A

o= mST _ (m=+m; — 2my) ~ 26 MeV. (7.2)
The first calculation of the higher-order corrections to this relation lezhte (35+5) MeV [81],
later updated in a modern version of three-flavor baryon ChRite (36+ 7) MeV [82]. Com-
bining this with our value foo (6.8) would lead to unrealistically large values of the strangeness
fraction,y = 0.4+ 0.1. However, more recent calculations using covariant baryon ChE@mman
including the effects from the baryon decuplet [83] give sizably laugdues ofay, for example
the covariant calculation of [84] results oy = (584 8)MeV. Such values fooyp lead to very
small or even vanishing strangeness fractions. Clearly, in such argxenavalue foroy is not
incompatible with a small strangeness fraction, but one also has to realizéehdtiral conver-
gence ofop and thus ofmg(N|sgN) is very doubtful. Therefore, at present one cannot draw a firm
conclusion on the size gfbased on (7.1). For this issue, see also the discussion in H. Leutwyler’s
contribution to these proceedings [85].

8. Matching to chiral perturbation theory

The matching to ChPT is one of the most fundamental applications of the RS sokitioe
it offers a unique opportunity for a systematic determinatiomfdfLECs [86]. One would expect
the chiral expansion to work best in a kinematic region where no singularit®@s, i.e. where the
amplitude can be described solely by a polynomial in the Mandelstam varidltissis precisely
the situation encountered in the subthreshold region: the amplitude is puaélymne character-
ized by its expansion coefficients aroufud= 0,t = 0). The matching is thus most conveniently
performed by equating the chiral expansion for the subthreshold pteete the RS results given
in Table 1. In addition, the error propagation will be based on the correlatiefficients listed in
Table 2.

As we have discussed already in Sect. 2, fineamplitude at NLO, ﬁ(p“), involves four
NLO LECs, ¢, four (combinations of) RLO LECs, d;, and five NLO LECs, &, see [87]. These
13 LECs correspond to the 13 subthreshold parameters that receaitrédbations from LECs in
a fourth-order calculation (all higher parameters are given by LETRigtorder). Inverting the
expressions for the subthreshold parameters, we obtain the LECs suetdniarizable 3, with
correlation coefficients given in [78]. AD(p?) only thec; contribute, and only four subthreshold
parameters are sensitive to these LECs. In particular, there is a LEfor

_ 1 >
doolnio = a7z = 115V (8.1)
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NLO N2LO N3LO N3LONN
c1[GevY —~0.744+0.02 —-1.0740.02 -1.11+0.03 —1.104+0.03
c2[GevY 1.81+0.03  320+0.03 313+0.03 35740.04
c3[GeVY ~361+0.05 -5324+0.05 -561+0.06 —55440.06
ca[GevY 2.17+0.03  356-+0.03 426+0.04 417+0.04

di+dz[GeV 2 —  1.0440.06 7.42+0.08 6.18+0.08
ds[GeV 7] — —048+0.02 -1046+0.10 —8.91+0.09
ds[GeV ] — 0144005 059+ 0.05 086-+0.05
di4—di5[GeV 2 — —-1.90+0.06 -1302+0.12 -1218+0.12
e14[GeV Y — — 0.89-+ 0.04 118+ 0.04
e15[GeV 3] — — 0974006 —233+0.06
es[GeV 3 — — —261+£003 —0.23+0.03
&7[Gev Y — — 0.01+0.06 —0.1840.06
e1g[GeV 3 — — 4204005 —3.24+0.05

Table 3: Results for therN LECs at different orders in the chiral expansion [86, 37]. minst cases,
standard an®N counting coincide up to RLO, except for NLO inc4, which in theNN scheme becomes
(2.44+0.03)GeV 1,

in fair agreement witltlyg = (1.41+ 0.01)M2 from Table 1.
At N2LO four d; appear, and eight subthreshold parameters receive contributioms EGs.
In addition, there are five LETs

3ol n2Lo = 0-22M,.°,
bolneio = 0.92M, 4,

a1 | oo = 0.07M,.°,
botlnzio = 0.19M, 4,

dgalneLo = 0.034M,.°,
(8.2)

to be compared with the corresponding numbers in Table 1. For atl;huhese predictions are
quite close to the full result. Comparing the different extractions up%oQ\ the convergence
pattern for theg; looks reasonably stable. In contrast, while thd & d; are of natural size, their
values increase by nearly an order of magnitude when goingt®Nexcept fords). The origin
of this behavior can be identified from the analytic expressidgs, d;o, dg;, and by, receive
loop corrections involving terms that scale wigfi(cs — ¢4) ~ —16 GeV !, which are balanced
by the large LECs in order to keep the subthreshold parameters at theicg@hyalues. The
enhancement of the, in turn, can be understood from resonance saturation, since t&sdping
resonant states, they would be expected to scale-aga/Ap = ¢ (1GeV 1) [88]. Whilet-channel
resonances are required as well to reproduce the physical valubs @f the most prominent
enhancement faz,_4 is generated by th&(1232) [89, 21, 16]. Given such large loop corrections
the errors for the LECs at a given chiral order are negligible comp@ardéite uncertainties to be
attached to the chiral expansion itself.
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Figure 9: Convergence of the chiral expansion for the nucleon masdwascdon of Mz in comparison to
lattice: LHCP [92],xQCD [93], and ETMC [94]. Calculations close to or even at thggical point do repro-
duce the physical mass of the nucleon: @83 MeV [95], 93625)(22) MeV [96], 9338)(18) MeV [97, 98].
Figure taken from [37].

9. Chiral extrapolation of the nucleon mass

At fourth order in the chiral expansion the nucleon mass can be ergrasq90, 91, 72]

3gaM3 3 M
M 2 AT 2 o 4 7T
my = m—4ci My, 3272 32n2F,§m<gA+m( 801+02+4c3))M,,|og—m
e 3 (292 — com) M+ O(M3). (9.1)
128m2F2m n &

Here,mdenotes the nucleon mass in the chiral limit, &g F, andga are the physical quantities;
the renormalization of; andga is of higher order in the chiral expansios. = e;(m) represents
a combination of from [87] (evaluated at renormalization scale= m).

The chiral expansion of the-term as defined in (1.2) follows from (9.1) by means of the
Feynman—Hellmann theorem [3, 4]. Sirgecannot be determined from the subthreshold parame-
ters of iN scattering, we fix it by demanding that it reproduces (6.8). \&jthdjusted in this way,
we can then predict the nucleon mass in the chiral limit. Including isospirkimgeaorrections
omitted in (9.1) for simplicity, we obtain [37]

M= 8695MeV, (9.2)

whereni coincides withmin the isospin limit; see [37] for details.

The full pion-mass dependence is shown in Fig. 9 compared to lattice re$hksstriking
feature coined the “ruler approximation” [99, 100, 101] is that the sttdigh 800 MeV+ M
reproduces lattice results over a wide range of pion masses, befamedaiite physical region
the curvature demanded by ChPT has to set in. This behavior has b&famead in many more
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lattice calculations, see e.g. [95, 96, 94]. Figure 9 demonstrates that(ife prediction fails
already at pion masses as low as 300MeV. As noted earlier [102, 88jaitlge of convergence
of the chiral expansion for the nucleon mass appears to be extremely limitedfadt that to a
remarkably good approximation lattice results fall on a straight line implies thiatdimg higher
chiral orders [103, 104, 105, 106] in a fit to lattice data is not a solftitiere have to be huge
cancellations amongst the individual terms to produce the observed ligleavibr.

We stress that this phenomenon solely concerns the range of corseligdh,;, not the rate
of convergence at the physical point. Based on the isospin-limit versfd@sl) and the equivalent
expansion of ther-term, we find

My — 8695MeV-+86.5MeV—154MeV—2.3MeV — 9383 MeV (9.3)
oMY o) oMy oMY
and
O = 86.5MeV—232MeV—4.2MeV = 59,1 MeV, 9.4)
v "
oM oMp) oM

both of which display a very reasonable convergence pattern.

10. Conclusions

Pion—nucleon Roy-Steiner equations allow one to determine the low-emdgcattering
amplitude with high precision. They are based on a rigorous formalism tlegsaddl the stric-
tures from analyticity, unitarity, and crossing symmetry. New experimentat iop the scattering
lengths derived from hadronic atoms provides crucial constraintsifattalysis. We have for the
first time providedniN phase shift at low energies with well-defined systematic uncertainties; ex-
plicit numerical parameterizations of these solutions can now be used insaplications [37].
Similarly, thet-channelmr — NN partial waves have been discussed including a complete error
analysis. A new phenomenological determinaton ofiheo-term has resulted in the very pre-
cise value ofoy = (59.1+ 3.5) MeV [78]. Important checks compared to the previous dispersive
Karlsruhe—Helsinki analysis have been performed, in particular we tested that reverting to
older input quantities leads to consistent results throughout. The chiradriengy constants ac-
cessible in pion—nucleon scattering have been determined by matching abthesshold point,
where convergence of the chiral expansion is expected to work8&sthe resulting values should
be used consistently in future applications of chiral potentials in nucleaigsy
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