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Ever since Weinberg’s seminal predictions of the pion–nucleon scattering amplitudes at thresh-

old, this process has been of central interest for the study of chiral dynamics involving nucleons.

Quantities like the scattering lengths or the pion–nucleonσ -term are fundamental characteristics

of the explicit breaking of chiral symmetry by means of the light quark masses. On the other

hand, pion–nucleon dynamics also strongly affects the long-range part of nucleon–nucleon po-

tentials, and hence has a far-reaching impact on nuclear physics. We briefly review approaches

to analyze pion–nucleon scattering in the framework of baryon chiral perturbation theory. We

then discuss how the fruitful combination of dispersion-theoretical methods, in particular in the

form of Roy–Steiner equations, with chiral dynamics allowsfor a precise determination of pion–

nucleon scattering amplitudes at low energies. Special attention will be paid to the extraction of

the pion–nucleonσ -term and the low-energy constants of chiral perturbation theory.
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Figure 1: (a) Leading-order diagrams forπN scattering in chiral perturbation theory. Nucleons are denoted
by full, pions by dashed lines. (b) Next-to-leading-order diagrams, depending on low-energy constants
c1−4. These diagrams capture the leading effect of∆(1232) resonance exchange. Crossed Born terms and∆
exchange graphs are not shown explicitly.

1. Introduction

Pion–nucleon (πN) scattering is one of the simplest processes to study chiral dynamics involv-
ing nucleons. At leading order (LO) in the chiral expansion, i.e., in the expansion in pion masses
and momenta, the scattering amplitude is given by the Feynman diagrams shown in Fig. 1, resulting
in the well-known low-energy theorems (LETs) for theS-wave scattering lengths, the amplitudes
evaluated at threshold [1, 2]:

a−0+ =
MπmN

8π(mN +Mπ)F2
π
+O

(
M3

π
)
, a+0+ = O

(
M2

π
)
. (1.1)

The isospin-odd scattering length is hence predicted solely in terms of the pion(Mπ ) and nucleon
(mN) masses as well as the pion decay constantFπ , while the isospin-even one is suppressed. The
strength of the Born term amplitudes (that do not contribute at threshold to leading order) is given
in terms of the pion–nucleon coupling constantg, which is related to the axial couplinggA by the
Goldberger–Treiman relation,g= gAmN/Fπ , up to higher orders.

Already at next-to-leading order (NLO;O(p2) in the chiral counting), theπN scattering am-
plitude depends on a list of low-energy constants (LECs), conventionallydenoted byc1−4, which
are less readily determined from phenomenology. These NLO contributionstend to be large: three
of the couplings (c2−4) incorporate the leading low-energy effects of the∆(1232), the lowest-lying
resonant excitation of the nucleon; see also Fig. 1. As the mass gap is small,m∆ −mN ∼ 2Mπ , and
as the∆ couples strongly to theπN system, the numerical values of the NLO LECs are somewhat
larger than expected from naive dimensional analysis. To pin down theseLECs accurately and con-
sistently is an important task also in view of many nuclear physics applications: asshown in Fig. 2,
πN amplitudes constitute an important contribution to the two-pion exchange in nucleon–nucleon
scattering potentials, and determine the leading long-range three-nucleon force.

Figure 2: Contributions of pion–nucleon amplitudes to nucleon–nucleon scattering (left) and the three-
nucleon force (right). The gray blob denotesπN-scattering-type subdiagrams.
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A further strong incentive to study pion–nucleon scattering derives from its relation to the
pion–nucleonσ -termσπN, defined via the scalar form factor of the nucleon

σ(t) =
1

2mN
〈N(p′)|m̂(ūu+ d̄d)|N(p)〉, m̂=

mu+md

2
, σπN ≡ σ(0), (1.2)

wheret = (p′− p)2. Through the Feynman–Hellmann theorem [3, 4],σπN determines the light-
quark content of the nucleon mass,

σπN = m̂
∂mN

∂m̂
=−4c1M2

π +O(M3
π), (1.3)

where we have already indicated the leading term in the chiral expansion ofthis quantity: it is
given in terms of the LECc1, which in turn should be fixed fromπN scattering. This is the leading
approximation to the Cheng–Dashen LET [5], which we will discuss in more detail below. The
σ -term has garnered strong interest beyond the hadron physics communityin recent years, due to
its relation to the scalar couplings of the nucleon that are prerequisite for a consistent interpretation
of direct-detection dark matter searches [6, 7, 8].

2. Chiral perturbation theory and πN scattering

It is well known that the extension of chiral perturbation theory (ChPT) [9, 10, 11] to include
nucleons as massive matter fields is not without problems, in particular when itcomes to including
loop corrections. In contrast to the Goldstone boson theory, in which all mass scales are small, and
naive dimensional counting works as long as a mass-independent regularization scheme such as
dimensional regularization is used to calculate loop diagrams, the nucleon massconstitutes a new
mass scale of the order of the chiral symmetry breaking scale,mN ≈ Λχ = 4πFπ ∼ 1GeV. Loop
integrals pick up contributions from momenta of the order of the nucleon mass,with the result that
loops that should be suppressed in the chiral expansion in fact renormalize lower-order coupling
constants [12]. Various schemes have been used to overcome this problem.

• The heavy-baryon expansion [13, 14] regards the nucleon as heavy, non-relativistic fields;
nucleon momenta are decomposed into a large component proportional to the nucleon’s ve-
locity, plus small, residual momenta of the order of the pion mass. Similarly to heavy-quark
effective field theory, the non-relativistic expansion eliminates the mass from the nucleon
propagator, which re-enters parametrically in inverse powers as 1/mN corrections, which can
be constructed systematically on the Lagrangian level [14]. As a result, a two-fold expansion
is performed, with a unified power counting schemep/Λχ ∼ p/mN.1

• The infrared regularization (IR) scheme [15, 16], in contrast, is a manifestly covariant pre-
scription, in which loop integrals are divided into an infrared singular and aregular part. The
infrared singular part contains all non-analytic loop effects and obeysnaive power count-
ing rules, while the regular part can be expanded in a polynomial inp2 andM2

π and can be
consistently reabsorbed into a redefinition of the counterterms.

1An alternative counting scheme is typically used inNN applications, where the generic breakdown scaleΛb is
assumed to be smaller, and recoil corrections are deferred to higher orders by countingp/mN ∼ (p/Λb)

2.
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• In the IR prescription, regular parts of loop integrals are subtracted completely, which has
the disadvantage of inducing unphysical cuts outside the low-energy region [16]. This can
be avoided in the extended on-mass-shell (EOMS) scheme [17, 18], where only the explic-
itly power-counting-violating terms, expanded as a polynomial to the necessary order, are
omitted, thus preserving the correct analytic structure of the relativistic loopgraphs.

Ultimately, these regularization schemes of baryon ChPT, which have all been applied to analyze
πN scattering, should be equivalent (up to incomplete higher orders) when applied in “safe” kine-
matical regimes, away from branch cut singularities. In contrast, it has been shown that a naive
heavy-baryon representation of triangle loop graphs does not converge in the complete low-energy
region [16]; e.g., the spectral functions of nucleon electromagnetic formfactors show the wrong
threshold behavior due to the heavy-baryon approximation of anomalous thresholds [19], while
these are correctly reproduced in covariant schemes such as the IR one [20].

Apart from the use of various loop regularization schemes, different ChPT-based studies of
πN scattering also differ in the treatment of the∆(1232) resonance. As we explained above,∆
contributions enhance some of the LECs significantly; e.g. the contributions toc2−4 as determined
from the resonance saturation hypothesis can be as large as [21]

c∆
2 =−c∆

3 = 2c∆
4 ≈ 3.8GeV−1, (2.1)

which slows down the convergence of the chiral expansion significantly.It has therefore been pro-
posed to include the∆ degrees of freedom dynamically in baryon ChPT [22], which is also plausible
with regards to the large-Nc limit, in which the nucleon and the∆ become mass-degenerate. Uni-
fied counting schemes that have been suggested for this combined effective theory include theε
expansion [23], in whichp, Mπ , andm∆ −mN are all counted asO(ε), and an alternativeδ expan-
sion [24], in whichp, Mπ ∼ O(δ ), butm∆ −mN ∼ O(δ 1/2) at low energies or near threshold, such
that loops including∆ propagators are effectively shifted to higher orders.

A significant number of studies over the last few years has pursued the strategy to fixπN
LECs by fitting to existing phase-shift analyses: the dispersion-theory-based Karlsruhe–Helsinki
analysis [25, 26], the GWU/SAID solution that is continuously updated with thelatest data [27, 28],
in some cases also the analysis performed by the Zürich group [29]. As ChPT obeys unitarity in
a perturbative sense only, amplitudes are usually unitarized by dropping the imaginary part and
reconstructing the phase shift from the real part only according to the prescription

δ (s) = arctan
( |q|

8π
√

s
Ret(s)

)

≈ |q|
8π

√
s
Ret(s), (2.2)

wheret(s) is a generic partial wave, andq the center-of-mass 3-momentum. The number of LECs
to be fitted at the different chiral orders is fourci at O(p2), four (linear combinations of)̄di at
O(p3) (plus one additional constant,̄d18, that parametrizes the Goldberger–Treiman discrepancy
in cases where the pion–nucleon coupling was not assumed to be fixed), and five (combinations
of) ēi at O(p4), which corresponds to complete one-loop order. Studies of this kind, performed
over the last five years only, include IR toO(p3) [30], EOMS toO(p3) andO(δ 3) [31], EOMS
to O(p4) andO(δ 3) [32] (the amplitudes including the∆ calculated in this study may violate cer-
tain positivity constraints inside the Mandelstam triangle [33]), heavy-baryon ChPT toO(p4) with
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NN counting scheme [34], an analysis of fitting the amplitudes of [34] to actual observables in-
stead of phase shifts [35], and anO(p3) amplitude withN/D unitarization and CDD poles for the
∆ as well as theN(1440) [36]. Fit ranges typically extend up to about

√
s≈ 1.13GeV without,

and 1.20GeV with the∆ included explicitly. In most cases, theσ -terms extracted correspond to
the phase-shift analyses used as input: values likeσπN ∼ 45MeV are derived from fitting to the
Karlsruhe–Helsinki analysis, whileσπN ∼ 60MeV is typically obtained from the GWU/SAID so-
lution. Reliable estimates of the uncertainties associated with these values are difficult, in particular
in view of the extrapolation of the chiral amplitudes from the scattering into the physical region.

We will therefore follow a different strategy in the following, and instead ofusing ChPT
directly, analyzeπN scattering using dispersion theory, in the particular form of Roy–Steiner equa-
tions. We will come back to the issue of matching to ChPT in Sect. 8 only.

The following presentation relies heavily on our original article [37].

3. Roy–Steiner equations forπN scattering

In recent years, it has become apparent that the predictive power ofchiral symmetry can be
vastly increased by combining ChPT with dispersive techniques, which exploit analyticity to arrive
at a representation that relates the amplitude at an arbitrary point in the complex plane to an integral
over its imaginary part. While the latter can be constrained by the respective unitarity relation,
convergence of the dispersive integral often requires a certain number of a priori undetermined
subtraction constants that, in turn, can frequently be pinned down by matching to ChPT. Once
the subtraction constants are fixed, a dispersive representation provides the ideal framework to
reliably perform an analytic continuation into the complex plane, which becomesof fundamental
importance for broad resonances situated far away from the real axis.

In particular, forππ scattering, the use of Roy equations [38] has led to a determination of
the low-energyππ scattering amplitude with unprecedented accuracy [39, 40]. They are obtained
from a twice-subtracted fixed-t dispersion relation, where thet-dependent subtraction constants are
determined by means ofs↔ t crossing symmetry, and performing a partial-wave expansion. This
leads to a coupled system of partial-wave dispersion relations (PWDRs) for theππ partial waves
t I
J(s) with isospinI and angular momentumJ

t I
J(s) = SI

J(s)+
2

∑
I ′=0

∞

∑
J′=0

∞∫

4M2
π

ds′KII ′
JJ′(s,s

′)Im t I ′
J′(s

′), (3.1)

whereKII ′
JJ′ are known kinematical kernel functions and the scattering lengths—the onlyfree para-

meters—appear in the subtraction termsSI
J(s). In addition, assuming elastic unitarity

Im t I
J(s) = σ(s)|t I

J(s)|2, t I
J(s) =

e2iδ I
J(s)−1

2iσ(s)
, σ(s) =

√

1− 4M2
π

s
, (3.2)

(3.1) translates into a coupled integral equation for the phase shiftsδ I
J themselves.

An important issue is the range of validity of the Roy equations. While the convergence of
the fixed-t dispersion relations is guaranteed for allt < 4M2

π [41, 42, 43], the reduction to partial
waves imposes further constraints on the domain of validity of the system. As a matter of fact, the
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partial-wave expansion of the imaginary part in the dispersive integral converges only for scattering
anglesz′ that lie within the large Lehmann ellipse [44]. Due to the finite domain of validity, the Roy
equations cannot be used up to infinity. Above a certain energy, referred to as the matching point
sm, input from experiment for the imaginary parts of the partial waves is required, so that in practice
the equations are solved between threshold andsm. Furthermore, the partial-wave expansion will
be truncated at a certain angular momentumJ and higher partial waves treated on the same footing
as the lower partial waves abovesm.

Unfortunately, in the case ofπN scattering, a full system of PWDRs has to include dispersion
relations for two distinct physical processes,πN → πN (s-channel) andππ → N̄N (t-channel), and
the use ofs↔ t crossing symmetry will intertwines- andt-channel equations, which hampers the
use of fixed-t dispersion relations for this system.

Roy–Steiner (RS) equations are also a set of coupled PWDRs that, in contrast toππ Roy
equations, are derived from hyperbolic dispersion relations (HDRs) [45], which automatically re-
late the different channels in theπN system. In close analogy to similar analyses of theππ [39], the
πK [46], or theγπ [47] system, solving the RS equations forπN, in particular once combined with
the pionic-atom constraints on the scattering lengths [48, 49], can providea remarkably precise
representation of theπN amplitude at low energies.

The construction of a complete system of RS equations forπN scattering has been presented in
detail in [50]; see also [51, 52, 53] for partial results. The starting point in the derivation is provided
by HDRs for the invariantπN amplitudes, which, in combination with the pertinent partial-wave
expansions as well as unitarity relations, are used to derive a closed system of PWDRs that fully
respects analyticity, unitarity, and crossing symmetry. Subtractions are performed at the so-called
subthreshold points= u, t = 0, which proves convenient for the matching to ChPT and for the ex-
trapolation to the Cheng–Dashen point [5], and thus for establishing the relation toσπN by means
of a low-energy theorem [5]. In fact, it has been pointed out previously that a reliable extrapo-
lation to the subthreshold region requires additional input from thet-channel (ππ → N̄N) partial
waves [54, 55, 56], a requirement that is straightforward to comply with in the RS formalism,
as HDRs by construction intertwine all physical regions. In the end, both the s- and t-channel
equations will involve the subtraction constants and theπN coupling constant as free parameters,
see [50]. In this way, thes-channel RS equations read [45]

f I
l+(W) = NI

l+(W)+
1
π

∞∫

tπ

dt ′ ∑
J

{

GlJ(W, t ′) Im f J
+(t

′)+HlJ(W, t ′) Im f J
−(t

′)
}

(3.3)

+
1
π

∞∫

W+

dW′
∞

∑
l ′=0

{

KI
ll ′(W,W′) Im f I

l ′+(W
′)+KI

ll ′(W,−W′) Im f I
(l ′+1)−(W

′)
}

,

where due toG-parity only even/oddJ contribute for isospinI = +/−, respectively. The kernels
KI

ll ′(W,W), GlJ(W, t), andHlJ(W, t) are known analytically, andNI
l+(W) denotes the partial-wave

projections of the pole terms.
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ππ scattering
phases δIt

J
(t)

higher partial waves
Im fJ>Jm

± (t ≤ tm)

t-channel partial waves fJ

±
(t)

solve RS (MO) equations for J ≤ Jm and t ≤ tm

high-energy region
Im fJ

±
(t ≥ tm)

πN coupling constant,
inelasticities for

t ≤ tm and s ≤ sm

subthreshold parameters

higher partial waves
Im f I

(l>lm)±(s ≤ sm)
s-channel partial waves f I

l±
(s)

solve RS equations for l ≤ lm and s ≤ sm

high-energy region
Im f I

l±
(s ≥ sm)

Figure 3: Solution strategy for RS equations inπN scattering. Thes- andt-channel partial waves will be
solved for up to angular momentalm = 1 andJm = 2, respectively. Figure taken from [37].

For thet-channel partial-wave projection, the correspondingt-channel RS equations are [50]

f J
+(t) = ÑJ

+(t)+
1
π

∞∫

tπ

dt ′∑
J′

{

K̃1
JJ′(t, t

′) Im f J′
+ (t ′)+ K̃2

JJ′(t, t
′) Im f J′

− (t ′)
}

+
1
π

∞∫

W+

dW′
∞

∑
ℓ=0

{

G̃Jℓ(t,W
′) Im f I

ℓ+(W
′)+ G̃Jℓ(t,−W′) Im f I

(ℓ+1)−(W
′)
}

, (3.4)

and similarly for f J
− except for the fact that these do not receive contributions fromf J

+. In addition,
only even or oddJ′ couple to even or oddJ (corresponding tot-channel isospinIt = 0 or It = 1),
respectively, and only highert-channel partial waves contribute to lower ones.

Contrary to thes-channel, below the first inelastic threshold, thet-channel unitarity relations
are linear inf J

±
Im f J

±(t) = σπ
t

(
t It
J (t)

)∗
f J
±(t), (3.5)

from which one can infer Watson’s final-state interaction theorem [57], stating that (in the elastic
region) the phase off J

± is given by the phaseδ It
J of the respectiveππ scattering partial wavet It

J .
The strategy for the solution of the RS equations is outlined in Fig. 3: in thes-channel, the

six S- andP-waves f I
l±, with I = ± for the isospin index, orbital angular momentuml , and to-

tal angular momentumj = |l ± 1/2|, are considered dynamically below the matching pointsm,
whereas the imaginary parts of higher partial waves for alls, the imaginary parts of theS- and
P-waves abovesm, and, potentially, inelasticities belowsm are required as input. In practice, we
will choose the matching point at its optimal valuesm = (1.38GeV)2 as argued in [50]. In contrast
to the sixs-channel amplitudes, there are only threeS- andP-waves in thet-channel,f J

±, with total
angular momentumJ and the subscript referring to parallel/antiparallel antinucleon–nucleon helic-
ities. The equations for thet-channel partial waves take the form of a Muskhelishvili–Omnès (MO)

7
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problem [58, 59], whose solution requires—in addition to higher partial waves and the imaginary
parts above the matching pointtm—input for theππ phase shifts.

Once thet-channel problem is solved, the resultingt-channel partial waves are used as input
for the s-channel problem, which then reduces to the form of conventionalππ Roy equations.
Eventually, a full solution of the system can be obtained by iterating this procedure until all partial
waves and parameters are determined self-consistently. In practice, virtually all interdependence
proceeds via the subtractions constants, so that the need for an iterativeprocedure can be avoided
if the corresponding terms are included explicitly in thes-channel fit.

4. Solutions of thet-channel ands-channel subproblems

Given that data in thet-channel reactionππ → N̄N become available only above the two-
nucleon threshold, the solution of thet-channel equations is subject to an additional complication
that is related to the large pseudophysical region in this reaction. Thus, theamplitudes in the pseu-
dophysical regiontπ ≤ t ≤ tN required for thet-channel integrals need to be reconstructed from
unitarity. While for every partial waveππ intermediate states generate by far the dominant contri-
bution, intermediate states besidesππ become relevant in the unitarity relation around 1GeV, most
notably in theS-wave, whereK̄K intermediate states account for the occurrence of thef0(980)
resonance, but also for all partial waves where inelasticities from the 4π channel start setting in
before the two-nucleon threshold is reached. An explicit coupled-channel framework is only feasi-
ble if the correspondingS-matrix is known sufficiently accurately, a requirement that in the present
application is only met for theππ/K̄K S-wave system. For this reason, we adopt a single-channel
framework forP- andD-waves, estimating the impact of 4π inelasticities by appropriate variations
of the input. Similarly, we include thēKK channel explicitly in theS-wave, while accounting for
effects from higher channels in the uncertainty estimate.

In the single-channel approximation, where onlyππ intermediate states are considered in the
unitarity relation, the MO solution forf J

±(t) is given in terms of the Omnès function [59]

ΩJ(t) = exp

{

t
π

tm∫

tπ

dt ′
δJ(t ′)

t ′(t ′− t)

}

, (4.1)

which is a function of theππ phase shiftδJ(t) for angular momentumJ (and isospin 0/1 for
even/oddJ) only. Abovetm, further information about absorptive parts is required. However, in
the practical application the uncertainties belowtm are much larger than the contribution from the
imaginary part above, so that we will drop their contribution everywhere.

In the two-channel approximation theππ → N̄N and K̄K → N̄N S-waves f 0
+(t) and h0

+(t)
fulfill the unitarity relation

Im f(t) = T∗(t)Σ(t)f(t), f(t) =

(

f 0
+(t)

2√
3
h0
+(t)

)

. (4.2)

The solution of this problem is still accessible with MO techniques when the Omnèsfunction is
replaced by an Omnès matrix [60, 61], which in general cannot be givenin closed form but has to
be determined numerically for a givenT-matrix.
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According to Fig. 3 the solution of the full RS system requires an iteration betweens- andt-
channel. However, it was shown in [50] that by far the dominant recoupling between the subsystems
proceeds by means of the subtraction constants, while the sensitivity of thet-channel solution on
the precise input used for theπN partial waves was found to be very small. Therefore, in the
end the accuracy that can be reached for thet-channel amplitudes is limited by the remaining
uncertainty in the subthreshold parameters as determined from the iterated RSsolution, and effects
significantly below that threshold can be neglected. For this reason, the iteration can be organized
more efficiently in practice by solving thet-channel system once with reference values for the
subthreshold parameters, and then including the corrections to this starting-point solution directly
into the solution procedure for thes-channel equations. We use the subthreshold parameters from
the KH80 solution [25, 26] as our reference point and express the corrections in terms of

∆X±
mn= X±

mn−X±
mn

∣
∣
KH80, X ∈ {a,b,d}. (4.3)

The results for the imaginary parts of thet-channel partial waves when the subthreshold pa-
rameters are fixed at KH80 values are depicted in Fig. 4. We choose the matching point astm = tN.
In general, for the evaluation of thes-channel integrals we use the phase shifts from [27]. For the
S-wave, we take theππ phase shift and inelasticity up to

√
t0 = 1.3GeV from the Roy-equation

analysis of [62] and theππ → K̄K partial wave from RS equations [46]. TheπN coupling constant
is fixed atg2/(4π) = 13.7 [48, 49], theKN partial waves are taken from [63], and the hyperon
Born terms are evaluated with the couplings from [64]. The main uncertainty isgenerated by the
fact that around 1.3GeV inelasticities from 4π intermediate states start to become relevant, so that
a two-channel description is not strictly applicable any more. For the continuation of the phase
shifts abovet0 we consider two extreme cases: first, we guide the phase shifts smoothly to 2π
abovet0 (motivated by the asymptotic behavior), and second, we keep the phase shifts constant,
with the results represented by the solid and dashed lines in the first panel of Fig. 4, respectively.
The variation between these two curves is indeed the largest systematic uncertainty, for instance
much larger than the effect of switching off theKN input altogether [65], and will be propagated
accordingly in thes-channel error analysis later.

For theP-waves, the largest uncertainty is again generated by 4π inelasticities, which manifest
themselves inρ ′ andρ ′′ resonances that have a substantial branching fraction to 4π. In order to
estimate their effect we follow [66] and use a phase shift constructed in such a way as to reproduce
theρ ′ andρ ′′ in the pion vector form factor in an elastic approximation. The results for Imf 1

±(t)
with (solid lines) and without (dashed lines) these resonances built in are shown in the second
row of Fig. 4. The effects are indeed restricted to the energy region above 1GeV, so that for the
error propagation to thes-channel solution the effects are negligible compared to the errors in the
subthreshold parameters. The same holds true for the intrinsic uncertaintiesin theππ phase shift:
using the phase shifts from [40] or [62] produces only tiny differences in theρ-peak.

TheD-waves are dominated by thef2(1270) resonance, which has a 15% inelasticity to the 4π
andK̄K channels. One way to estimate the potential impact of these inelasticities is to replace the
ππ phase shift in the MO solution by the phase of theππ partial wave. The former corresponds to
the solid, the latter to the dashed lines in the third row of Fig. 4 (we use phase shift and inelasticity
from [40]). The effect is again quite moderate and does not need to be propagated to thes-channel
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Figure 4: Imaginary parts of thet-channel partial waves with KH80 subthreshold parameters.The black
solid (red dashed) line refers to our central solution (the dominant input variation as described in the main
text), while the black crosses indicate the results from [26]. Figure taken from [37].

solution. However, we note that thef2(1270) resonance itself plays an important role in the inter-
play between thes- andt-channel RS subsystems: without including thef2(1270) in thet-channel
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D-waves, we could not find an acceptable solution of thes-channel equations.
In view of this surprising role of thef2(1270), one may obviously wonder about the impact

of yet higher partial waves. The first resonance in theF-waves is theρ3(1690), at significantly
higher energies than thef2(1270). Moreover, it is predominantly inelastic with a 70% branching
fraction to the 4π channel, so that an elastic treatment becomes difficult to justify. However, to
get a rough estimate of the expected size of theF-waves, we constructed anF-wave phase shift
by matching the parameterization from [40] to a Breit–Wigner description of theρ3(1690), with
Breit–Wigner parameters taken from [67] and results shown in the last rowof Fig. 4. Indeed, we
find that theF-wave contribution is much smaller than theD-wave counterpart, even to the extent
that the effect can be safely absorbed into the uncertainty estimate altogether. Given that due to
the inelastic nature of theρ3(1690) our calculation of theF-waves is less rigorous than that of the
lower partial waves, we will indeed quote central results forJ ≤ 2, and only include theF-waves
in the error analysis.

Once thet-channel equations are solved, the structure of thes-channel problem resembles the
form of ππ Roy equations, and it should be amenable to similar solution techniques. The basic idea
can be summarized in such a way that the phase shifts at low energies, fromtheπN threshold to the
maximum allowed matching point atWm = 1.38GeV, are represented in suitable parameterizations
whose free parameters, together with the subtraction constants, are determined by minimizing the
difference between the left-hand side (LHS) and right-hand side (RHS)of (3.3),

∆2
RS= ∑

l ,Is,±

N

∑
j=1




Re f Is

l±(Wj)−F
[

f Is
l±

]

(Wj)

Re f Is
l±(Wj)





2

. (4.4)

The information required to solve the RSs-channel equations is summarized in the flowchart
of Fig. 3. With respect to thes-channel input, in addition to theS- andP-wave inelasticities, we
have to include the imaginary part ofS- andP-waves aboveWm as input, as well as the imaginary
parts of thel > 1 partial waves above theπN thresholdW+. In the regionW ≤ Wa = 2.5GeV,
we will use the solutions of the Karlsruhe–Helsinki (KH80) [25, 26] and the GWU/SAID [27, 28]
PWAs as input. The effect of taking one or the other will be considered asa source of uncertainty.
In addition, the significance of higher partial waves decreases asl increases due to the centrifugal
barrier. For our central solution we sum up all partial waves up tolmax = 4, while the difference
to lmax= 5 is taken as an indication for the truncation error in the partial-wave expansion and will
be included in the final uncertainty estimate. AboveWa = 2.5GeV we consider the Regge model
from [68] based on differential cross section and polarization data of backwardπN scattering.

With respect to thet-channel contribution, a solution to (3.3) requires information on the
imaginary parts of allt-channel partial waves. We use the solutions of the RSt-channel subproblem
discussed above as input. The role of theF-waves will be included only as a source of uncertainty,
as will be the effect of the different ways to perform the continuation of the S-wave phase shift in
the region above

√
t0 = 1.3GeV.

In addition, we found that the solution is stabilized substantially when theS-wave scattering
lengths are imposed as constraints on the system instead of trying to predict them from the RS
solution. Since the scattering lengths are already known very precisely from pionic atoms [48, 49],
a prediction from the RS solution, if it could be extracted in a reliable manner atall, would be
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extremely unlikely to be able to compete in accuracy. Therefore we impose on our solutions the
scattering length values [49, 69, 37]

a1/2
0+ = (169.8±2.0)×10−3M−1

π , a3/2
0+ = (−86.3±1.8)×10−3M−1

π . (4.5)

As the starting point for the minimization, we use KH80 values for the subthreshold parame-
ters, and the GWU/SAID solutions for s-channel phase shifts. In orderto investigate to what extent
these equations are fulfilled for the SAIDs-channel amplitudes, we compare the LHS and RHS
of (3.3) before starting the minimization in Fig. 5. This figure shows that the equations are fulfilled
in the threshold region (except for theS31-wave), while deviations emerge at higher energies in
nearly all partial waves, most notably in theP13 andP31.

The minimization of (4.4) provides us with a new set of subthreshold parameters andS- and
P-wave phase shifts. The results for the LHS and RHS of thes-channel RS equations after the
fit, also shown in Fig. 5, demonstrate good agreement, only for theS31-wave small deviations
are still perceptible close toWm. In addition, Fig. 5 shows that only for theS-waves there is a
sizable change between the new solution and the GWU/SAID one. For theP-waves, the agreement
between LHS and RHS of the RSs-channel equations is almost entirely due to the change of the
subthreshold parameters. This result justifies the approach already introduced above: a solution
of the full RS system of equations can be achieved by including the dependence of thet-channel
results on the subthreshold parameters explicitly in the minimization of (4.4), but neglecting their
weak dependence on thes-channel input, which, in addition, changes little with respect to the SAID
values considered in the first place.

5. Results for low-energy phase shifts and subthreshold parameters

The previous results show how to obtain a consistent solution of thet- ands-channel sub-
systems, by including the dependence of thet-channel partial-wave solutions on the subthreshold
parameters explicitly in thes-channel fit. We have performed a full error analysis, where the un-
certainty estimates include a number of effects [37]: first, since the RS equations are valid only
in a finite energy range below the matching point and only a finite number of partial waves are
included explicitly in the solution, we vary the input for the matching condition as well as for the
energy region above the matching point and higher partial waves, both regarding different partial-
wave analyses and truncations of the partial-wave expansion. Furthermore, we vary the input for
theπN coupling constant withing2/(4π) = 13.7(2) [48, 49] and investigate the sensitivity to the
parameterization of the low-energy phase shifts used in the solution. Second, we also observed
that the RS equations are more sensitive to some subthreshold parameters than others. To ac-
count for this effect, we generate a set of solutions corresponding to different starting values of the
χ2-minimization, while imposing sum rules for the higher subthreshold parameters,and took the
observed distribution as an additional source of uncertainty. Third, we propagate the errors in the
scattering lengths, which crucially enter as constraints in the minimization, to the results for the
subthreshold parameters.

The corresponding results for the real parts of thes-channel partial waves are plotted in Fig. 6.
The resulting subthreshold parameters are given in Table 1, compared to the KH80 values. The
comparison between them reveals fair agreement, all of them lie within 2σ , with the only exception
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Figure 5: LHS and RHS of the RS equations for Ref Is
l±. The red solid curves indicate SAID results [27, 28].

Red dashed lines correspond to the RHS of the RS s-channel equations when SAIDs-channel amplitudes [27,
28] and KH80 [25, 26] subthreshold parameters are considered. Black solid and dashed lines correspond to
the LHS and RHS of RS equations after the fit. Figure taken from[37].

of d−
00. We also keep track of the correlations between subthreshold parameters, obtaining a 13×13

covariance matrix that encodes uncertainties and correlations of the 13 subthreshold parameters,
which will be relevant for the matching to ChPT.

Once the subthreshold parameters and their covariance matrix are finalized, so can be the
uncertainties of thet-channel partial waves. They cover both the systematic errors associated with
the inelastic input and theππ phase shifts, as well as the subthreshold-parameter errors. The
systematic errors are deduced from the curves depicted in Fig. 4, whosespread is interpreted as a
full 1σ band, to be attached around the central solution. For the propagation of the subthreshold-
parameter errors we also take into account their correlations, which in particular play a key role for
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Figure 6: Final errors bands for theπN phase shifts. The dashed lines indicate the central curves.Figure
taken from [37].

f 1
+ and f 2

+. We combine both effects by adding them in quadrature, leading to the resultsfor the
imaginary parts plotted in Fig. 7.

For completeness we also show the results for the real parts, see Fig. 8. Apart from theS-wave
all partial waves are strongly dominated by the Born terms close to threshold,where they take a
large (but finite) value that would overshadow any structure in the remainder of the amplitude if
included in the plot. For this reason, the scale is cut off much earlier, focusing on the part of the
partial waves where the respective resonances occur. In general,we find that deviations from the
KH80 results are at a similar level as already observed for the imaginary parts, with error analysis
performed in the same way as in Fig. 7.
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RS KH80

d+
00[M

−1
π ] −1.361±0.032 −1.46±0.10

d+
10[M

−3
π ] 1.156±0.019 1.12±0.02

d+
01[M

−3
π ] 1.155±0.016 1.14±0.02

d+
20[M

−5
π ] 0.196±0.003 0.200±0.005

d+
11[M

−5
π ] 0.185±0.003 0.17±0.01

d+
02[M

−5
π ] 0.0336±0.0006 0.036±0.003

d−
00[M

−2
π ] 1.411±0.015 1.53±0.02

d−
10[M

−4
π ] −0.159±0.004 −0.167±0.005

d−
01[M

−4
π ] −0.141±0.005 −0.134±0.005

b+00[M
−3
π ] −3.455±0.072 −3.54±0.06

b−00[M
−2
π ] 10.49±0.11 10.36±0.10

b−10[M
−4
π ] 1.000±0.029 1.08±0.05

b−01[M
−4
π ] 0.208±0.020 0.24±0.01

Table 1: Subthreshold parameters from the RS analysis in comparisonwith the KH80 values [25, 26]. Table
taken from [37].

6. Consequences for theπN σ -term

The Cheng–Dashen LET [5, 70] relates the Born-term-subtracted isoscalar amplitude evalu-
ated at the Cheng–Dashen point(ν = 0, t = 2M2

π) to the scalar form factor of the nucleon, evaluated
at momentum transfert = (p′− p)2 = 2M2

π ,

D̄+(0,2M2
π) = σ(2M2

π)+∆R, (6.1)

where∆R represents higher-order corrections in the chiral expansion. Thesecorrections are ex-
pected to be very small: the non-analytic terms agree at full one-loop order[71, 72], so that, based
on theSU(2) expansion parameter, the remaining effect would scale as(M2

π/m2
N)σπN ∼ 1MeV.

Here, we use the estimate [71]
|∆R|. 2MeV, (6.2)

derived from resonance saturation for theO(p4) LECs.
In practice, the relation (6.1) is often rewritten as

σπN = σ(0) = Σd +∆D −∆σ −∆R, (6.3)

with correction terms

∆σ = σ(2M2
π)−σπN, ∆D = D̄+(0,2M2

π)−Σd, Σd = F2
π
(
d+

00+2M2
πd+

01

)
. (6.4)
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d+
00 d+

10 d+
01 d+

20 d+
11 d+

02 d−
00 d−

10 d−
01 b+00 b−00 b−10 b−01

d+
00 1 −0.77 −0.51 −0.43 −0.39 −0.30 −0.34 0.43 0.46 0.37 −0.08 −0.39 0.14

d+
10 1 0.85 0.48 0.53 0.58 0.16 −0.40 −0.64 −0.48 0.06 0.56 −0.21

d+
01 1 0.59 0.68 0.90 0.08 −0.55 −0.71 −0.67 0.04 0.58 −0.24

d+
20 1 0.97 0.64 0.14 −0.35 −0.79 −0.63 0.01 0.72 −0.29

d+
11 1 0.67 −0.04 −0.26 −0.79 −0.60 0.01 0.78 −0.28

d+
02 1 0.13 −0.73 −0.75 −0.83 0.06 0.47 −0.22

d−
00 1 −0.50 0.01 −0.23 0.04 −0.11 −0.04

d−
10 1 0.61 0.86 −0.15 −0.05 0.21

d−
01 1 0.86 −0.09 −0.55 0.41

b+00 1 −0.10 −0.42 0.20

b−00 1 −0.20 0.34

b−10 1 0.18

b−01 1

Table 2: Correlation coefficients for the subthreshold parameters from the RS analysis [37].

∆σ measures the curvature in the scalar form factor, while∆D parameterizes contributions to the
πN amplitude beyond the first two terms in the subthreshold expansion. As shownin [73], although
these corrections are large individually due to strong rescattering in the isospin-0ππ S-wave, they
cancel to a large extent in the difference. For the numerical analysis we will use [74, 65]

∆D −∆σ = (−1.8±0.2)MeV. (6.5)

The crucial remaining challenge thus consists of determining the subthreshold parameters to suf-
ficient accuracy. Based on (6.1) the RS results for the subthreshold parameters translate immedi-
ately to a corresponding value ofσπN. To illustrate the dependence of theσ -term on the scattering
lengths used as input to the solution, we expandΣd linearly around the central values and find

Σd = (57.9±0.9)MeV+∑
Is

cIs∆aIs
0+, c1/2 = 0.24MeV, c3/2 = 0.89MeV, (6.6)

where∆aIs
0+ gives the deviation from the scattering lenghts extracted from hadronic atoms in units

of 10−3M−1
π . Already this linearized version producesΣd = (46±4)MeV if the KH80 scattering

lengths are used, and the agreement with the original KH80 valueΣd = (50± 7)MeV improves
further in a full solution. In contrast, our central solution correspondsto

Σd = (57.9±1.9)MeV, (6.7)

and thus to a significant increase compared to the early estimates.
Including also isospin-breaking corrections [75, 76, 77], the final result [78]

σπN = (59.1±3.5)MeV, (6.8)

does amount to a significant increase compared to the “canonical value” of σπN ∼ 45MeV, al-
though already 4.2MeV are due to new corrections to the LET (and thereof 3.0MeV from isospin
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Figure 7: Final results for the imaginary parts of thet-channel partial waves, with error bands including
both uncertainties in the subthreshold parameters and the MO input. The black crosses refer to the results
from [26]. Figure taken from [37].

breaking). The remaining increase of nearly 10MeV is dictated by experiment: the new scatter-
ing lengths from pionic atoms determine the position of theσ -term on the curve approximately
described by (6.6).

As discussed in Sect. 2, theσ -term has also been extracted fromπN phase shifts using ChPT
at one loop [79, 80, 32], partly finding central values that are compatiblewith (6.8). All the (disper-
sive) relations that constitute the Cheng–Dashen LET used in the extractionfrom the RS solution
are fulfilled by the chiral representation, too, albeit only in a perturbativeway. In particular, one
implicitly needs to extrapolate from the physicals-channel to the subthreshold region. Based on
the analysis performed up to here, we point out that the chiral one-loop representation is likely
problematic for a precision determination of theσ -term. It is well-known that it does not pro-
vide sufficient curvature to the scalar form factor of the nucleon [73];similarly, the quantity∆D

17



P
o
S
(
C
D
1
5
)
0
2
1

πN scattering: from ChPT to Roy–Steiner equations Bastian Kubis and Jacobo Ruiz de Elvira

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-2

0

2

4

6

8

10

12

14

16

√
R
e
f
0 +
(t
)
[G

eV
]

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-5

0

5

10

15

20

25

√

R
e
f
1 +
(t
)
[G

eV
−
1
]

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-25

0

25

50

75

100

125

√

R
e
f
1 −
(t
)
[G

eV
−
2
]

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

10

20

30

40

50

√
t [GeV]

R
e
f
2 +
(t
)
[G

eV
−
3
]

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

20

40

60

80

100

√
t [GeV]

R
e
f
2 −
(t
)
[G

eV
−
4
]

Figure 8: Final results for the real parts of thet-channel partial waves, with error bands including both un-
certainties in the subthreshold parameters and the MO input. The black crosses refer to the results from [26].
Figure taken from [37].

is severely underestimated [31]. Therefore, the one-loop representation of theπN scattering am-
plitude does not describe the subthreshold region very accurately: the extraction of theσ -term is
enabled only by the large cancellation in∆D −∆σ as described above. Furthermore, thet-channel
D-waves including thef2(1270) resonance are an essential ingredient to a consistent solution of
the RS system—omitting its contribution leads to a significantly largerσ -term. Thet-channelD-
waves of the chiral one-loop representation, however, are real: imaginary parts will only begin to
contribute at two-loop order. Hence, the large modifications induced by thef2(1270) are part of
the uncertainties ignored at one loop. The solution to this problem lies in the useof the RS equa-
tions for the momentum dependence of theπN amplitude. The convergence of the chiral series as
an expansion in powers of the light quark masses can be studied subsequently, as we will see in
Sect. 8.
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7. On the strangeness content of the nucleon

The πN σ -term can also be related to the mass shift in the nucleon due to strange quarks,
ms〈N|s̄s|N〉. For that, one usually considers the so-called strangeness fractiony, given by

σπN =
m̂

2mN

〈N|ūu+ d̄d−2s̄s|N〉
1−y

=
σ0

1−y
, y≡ 2〈N|s̄s|N〉

〈N|ūu+ d̄d|N〉 . (7.1)

The leadingSU(3) breaking is generated by the operator(ms− m̂)(ūu+ d̄d−2s̄s) so thatσ0 can
be expressed through baryon mass splittings

σ0 =
m̂

ms− m̂
(mΞ +mΣ −2mN)∼ 26MeV. (7.2)

The first calculation of the higher-order corrections to this relation led toσ0 = (35±5)MeV [81],
later updated in a modern version of three-flavor baryon ChPT toσ0 = (36±7)MeV [82]. Com-
bining this with our value forσπN (6.8) would lead to unrealistically large values of the strangeness
fraction, y = 0.4± 0.1. However, more recent calculations using covariant baryon ChPT and/or
including the effects from the baryon decuplet [83] give sizably largervalues ofσ0, for example
the covariant calculation of [84] results inσ0 = (58± 8)MeV. Such values forσ0 lead to very
small or even vanishing strangeness fractions. Clearly, in such a scenario our value forσπN is not
incompatible with a small strangeness fraction, but one also has to realize thatthe chiral conver-
gence ofσ0 and thus ofms〈N|s̄s|N〉 is very doubtful. Therefore, at present one cannot draw a firm
conclusion on the size ofy based on (7.1). For this issue, see also the discussion in H. Leutwyler’s
contribution to these proceedings [85].

8. Matching to chiral perturbation theory

The matching to ChPT is one of the most fundamental applications of the RS solution, since
it offers a unique opportunity for a systematic determination ofπN LECs [86]. One would expect
the chiral expansion to work best in a kinematic region where no singularitiesoccur, i.e. where the
amplitude can be described solely by a polynomial in the Mandelstam variables.This is precisely
the situation encountered in the subthreshold region: the amplitude is purely real, and character-
ized by its expansion coefficients around(ν = 0, t = 0). The matching is thus most conveniently
performed by equating the chiral expansion for the subthreshold parameters to the RS results given
in Table 1. In addition, the error propagation will be based on the correlation coefficients listed in
Table 2.

As we have discussed already in Sect. 2, theπN amplitude at N3LO, O(p4), involves four
NLO LECs,ci , four (combinations of) N2LO LECs, d̄i , and five N3LO LECs, ēi , see [87]. These
13 LECs correspond to the 13 subthreshold parameters that receive contributions from LECs in
a fourth-order calculation (all higher parameters are given by LETs atthis order). Inverting the
expressions for the subthreshold parameters, we obtain the LECs summarized in Table 3, with
correlation coefficients given in [78]. AtO(p2) only theci contribute, and only four subthreshold
parameters are sensitive to these LECs. In particular, there is a LET ford−

00

d−
00

∣
∣
NLO =

1
2F2

π
= 1.15M−2

π , (8.1)
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NLO N2LO N3LO N3LONN

c1 [GeV−1] −0.74±0.02 −1.07±0.02 −1.11±0.03 −1.10±0.03

c2 [GeV−1] 1.81±0.03 3.20±0.03 3.13±0.03 3.57±0.04

c3 [GeV−1] −3.61±0.05 −5.32±0.05 −5.61±0.06 −5.54±0.06

c4 [GeV−1] 2.17±0.03 3.56±0.03 4.26±0.04 4.17±0.04

d̄1+ d̄2 [GeV−2] — 1.04±0.06 7.42±0.08 6.18±0.08

d̄3 [GeV−2] — −0.48±0.02 −10.46±0.10 −8.91±0.09

d̄5 [GeV−2] — 0.14±0.05 0.59±0.05 0.86±0.05

d̄14− d̄15[GeV−2] — −1.90±0.06 −13.02±0.12 −12.18±0.12

ē14[GeV−3] — — 0.89±0.04 1.18±0.04

ē15[GeV−3] — — −0.97±0.06 −2.33±0.06

ē16[GeV−3] — — −2.61±0.03 −0.23±0.03

ē17[GeV−3] — — 0.01±0.06 −0.18±0.06

ē18[GeV−3] — — −4.20±0.05 −3.24±0.05

Table 3: Results for theπN LECs at different orders in the chiral expansion [86, 37]. Inmost cases,
standard andNN counting coincide up to N2LO, except for NLO inc4, which in theNN scheme becomes
(2.44±0.03)GeV−1.

in fair agreement withd−
00 = (1.41±0.01)M−2

π from Table 1.
At N2LO four d̄i appear, and eight subthreshold parameters receive contributions from LECs.

In addition, there are five LETs

d+
20

∣
∣
N2LO = 0.22M−5

π , d+
11

∣
∣
N2LO = 0.07M−5

π , d+
02

∣
∣
N2LO = 0.034M−5

π ,

b−10

∣
∣
N2LO = 0.92M−4

π , b−01

∣
∣
N2LO = 0.19M−4

π , (8.2)

to be compared with the corresponding numbers in Table 1. For all butd+
11 these predictions are

quite close to the full result. Comparing the different extractions up to N3LO, the convergence
pattern for theci looks reasonably stable. In contrast, while the N2LO d̄i are of natural size, their
values increase by nearly an order of magnitude when going to N3LO (except ford̄5). The origin
of this behavior can be identified from the analytic expressions,d−

00, d−
10, d−

01, and b+00 receive
loop corrections involving terms that scale withg2

A(c3 − c4) ∼ −16GeV−1, which are balanced
by the large LECs in order to keep the subthreshold parameters at their physical values. The
enhancement of theci , in turn, can be understood from resonance saturation, since, absent low-lying
resonant states, they would be expected to scale asci ∼ gA/Λb=O(1GeV−1) [88]. Whilet-channel
resonances are required as well to reproduce the physical values ofthe ci , the most prominent
enhancement forc2−4 is generated by the∆(1232) [89, 21, 16]. Given such large loop corrections
the errors for the LECs at a given chiral order are negligible comparedto the uncertainties to be
attached to the chiral expansion itself.
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Figure 9: Convergence of the chiral expansion for the nucleon mass as afunction ofMπ in comparison to
lattice: LHCP [92],χQCD [93], and ETMC [94]. Calculations close to or even at the physical point do repro-
duce the physical mass of the nucleon: 953(41)MeV [95], 936(25)(22)MeV [96], 933(8)(18)MeV [97, 98].
Figure taken from [37].

9. Chiral extrapolation of the nucleon mass

At fourth order in the chiral expansion the nucleon mass can be expressed as [90, 91, 72]

mN = m−4c1M2
π −

3g2
AM3

π
32πF2

π
− 3

32π2F2
π m

(

g2
A+m(−8c1+c2+4c3)

)

M4
π log

Mπ

m

+

{

e1−
3

128π2F2
π m

(
2g2

A−c2m
)
}

M4
π +O

(
M5

π
)
. (9.1)

Here,mdenotes the nucleon mass in the chiral limit, andMπ , Fπ , andgA are the physical quantities;
the renormalization ofFπ andgA is of higher order in the chiral expansion.e1 = e1(m) represents
a combination ofei from [87] (evaluated at renormalization scaleµ = m).

The chiral expansion of theσ -term as defined in (1.2) follows from (9.1) by means of the
Feynman–Hellmann theorem [3, 4]. Sincee1 cannot be determined from the subthreshold parame-
ters ofπN scattering, we fix it by demanding that it reproduces (6.8). Withe1 adjusted in this way,
we can then predict the nucleon mass in the chiral limit. Including isospin-breaking corrections
omitted in (9.1) for simplicity, we obtain [37]

m̃= 869.5MeV, (9.2)

wherem̃coincides withm in the isospin limit; see [37] for details.
The full pion-mass dependence is shown in Fig. 9 compared to lattice results.The striking

feature coined the “ruler approximation” [99, 100, 101] is that the straight line 800MeV+Mπ

reproduces lattice results over a wide range of pion masses, before around the physical region
the curvature demanded by ChPT has to set in. This behavior has been confirmed in many more
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lattice calculations, see e.g. [95, 96, 94]. Figure 9 demonstrates that theO(p4) prediction fails
already at pion masses as low as 300MeV. As noted earlier [102, 88], therange of convergence
of the chiral expansion for the nucleon mass appears to be extremely limited. The fact that to a
remarkably good approximation lattice results fall on a straight line implies that including higher
chiral orders [103, 104, 105, 106] in a fit to lattice data is not a solution:2 there have to be huge
cancellations amongst the individual terms to produce the observed linear behavior.

We stress that this phenomenon solely concerns the range of convergence inMπ , not the rate
of convergence at the physical point. Based on the isospin-limit versionsof (9.1) and the equivalent
expansion of theσ -term, we find

mN = 869.5MeV
︸ ︷︷ ︸

O(M0
π )

+86.5MeV
︸ ︷︷ ︸

O(M2
π )

−15.4MeV
︸ ︷︷ ︸

O(M3
π )

−2.3MeV
︸ ︷︷ ︸

O(M4
π )

= 938.3MeV (9.3)

and
σπN = 86.5MeV

︸ ︷︷ ︸

O(M2
π )

−23.2MeV
︸ ︷︷ ︸

O(M3
π )

−4.2MeV
︸ ︷︷ ︸

O(M4
π )

= 59.1MeV, (9.4)

both of which display a very reasonable convergence pattern.

10. Conclusions

Pion–nucleon Roy–Steiner equations allow one to determine the low-energyπN scattering
amplitude with high precision. They are based on a rigorous formalism that obeys all the stric-
tures from analyticity, unitarity, and crossing symmetry. New experimental input on the scattering
lengths derived from hadronic atoms provides crucial constraints for this analysis. We have for the
first time providedπN phase shift at low energies with well-defined systematic uncertainties; ex-
plicit numerical parameterizations of these solutions can now be used in various applications [37].
Similarly, thet-channelππ → N̄N partial waves have been discussed including a complete error
analysis. A new phenomenological determinaton of theπN σ -term has resulted in the very pre-
cise value ofσπN = (59.1±3.5)MeV [78]. Important checks compared to the previous dispersive
Karlsruhe–Helsinki analysis have been performed, in particular we have tested that reverting to
older input quantities leads to consistent results throughout. The chiral low-energy constants ac-
cessible in pion–nucleon scattering have been determined by matching at the subthreshold point,
where convergence of the chiral expansion is expected to work best [86]; the resulting values should
be used consistently in future applications of chiral potentials in nuclear physics.
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[40] R. García-Martín, R. Kamiński, J. R. Peláez, J. Ruiz de Elvira, and F. J. Ynduráin, Phys. Rev. D83
(2011) 074004 [arXiv:1102.2183 [hep-ph]].

[41] M. Froissart, Phys. Rev.123(1961) 1053.

[42] A. Martin, Phys. Rev.129(1963) 1432.

[43] Y. S. Jin and A. Martin, Phys. Rev.135(1964) B1375.

[44] H. Lehmann, Nuovo Cim.10 (1958) 579.

[45] G. E. Hite and F. Steiner, Nuovo Cim. A18 (1973) 237 [CERN-TH-1590 for appendices D and E].

[46] P. Büttiker, S. Descotes-Genon and B. Moussallam, Eur.Phys. J. C33 (2004) 409 [hep-ph/0310283].

[47] M. Hoferichter, D. R. Phillips and C. Schat, Eur. Phys. J. C 71 (2011) 1743 [arXiv:1106.4147
[hep-ph]].

[48] V. Baruet al., Phys. Lett. B694(2011) 473 [arXiv:1003.4444 [nucl-th]].

[49] V. Baruet al., Nucl. Phys. A872(2011) 69 [arXiv:1107.5509 [nucl-th]].

[50] C. Ditsche, M. Hoferichter, B. Kubis and U.-G. Meißner,JHEP1206(2012) 043 [arXiv:1203.4758
[hep-ph]].

[51] C. Ditsche, M. Hoferichter, B. Kubis and U.-G. Meißner,PoSCD 12 (2013) 064 [arXiv:1211.7285
[hep-ph]].

[52] J. Ruiz de Elvira, C. Ditsche, M. Hoferichter, B. Kubis and U.-G. Meißner, EPJ Web Conf.73
(2014) 05002.

[53] J. Ruiz de Elvira, C. Ditsche, M. Hoferichter, B. Kubis and U.-G. Meißner, Singapore, Singapore:
World Scientific (2014) 186.

[54] J. Stahov, PiN Newslett.15 (1999) 13.

[55] J. Stahov, PiN Newslett.16 (2002) 116.

24



P
o
S
(
C
D
1
5
)
0
2
1

πN scattering: from ChPT to Roy–Steiner equations Bastian Kubis and Jacobo Ruiz de Elvira

[56] G. E. Hite, W. B. Kaufmann and R. J. Jacob, Phys. Rev. C71 (2005) 065201.

[57] K. M. Watson, Phys. Rev.95 (1954) 228.

[58] N. I. Muskhelishvili,Singular Integral Equations, Wolters-Noordhoff Publishing, Groningen, 1953
[Dover Publications, 2nd edition, 2008].

[59] R. Omnès, Nuovo Cim.8 (1958) 316.

[60] J. F. Donoghue, J. Gasser and H. Leutwyler, Nucl. Phys. B343(1990) 341.

[61] B. Moussallam, Eur. Phys. J. C14 (2000) 111 [hep-ph/9909292].

[62] I. Caprini, G. Colangelo, and H. Leutwyler, Eur. Phys. J. C 72 (2012) 1860 [arXiv:1111.7160
[hep-ph]].

[63] J. S. Hyslop, R. A. Arndt, L. D. Roper, and R. L. Workman, Phys. Rev. D46 (1992) 961.

[64] B. Holzenkamp, K. Holinde and J. Speth, Nucl. Phys. A500(1989) 485.

[65] M. Hoferichter, C. Ditsche, B. Kubis and U.-G. Meißner,JHEP1206(2012) 063 [arXiv:1204.6251
[hep-ph]].

[66] S. P. Schneider, B. Kubis and F. Niecknig, Phys. Rev. D86 (2012) 054013 [arXiv:1206.3098
[hep-ph]].

[67] K. A. Olive et al. [Particle Data Group Collaboration], Chin. Phys. C38 (2014) 090001.

[68] F. Huang, A. Sibirtsev, J. Haidenbauer, S. Krewald, andU.-G. Meißner, Eur. Phys. J. A44 (2010) 81
[arXiv:0910.4275 [nucl-th]].

[69] M. Hoferichter, V. Baru, C. Hanhart, B. Kubis, A. Nogga and D. R. Phillips, PoS CD12 (2013) 093
[arXiv:1211.1145 [nucl-th]].

[70] L. S. Brown, W. J. Pardee and R. D. Peccei, Phys. Rev. D4 (1971) 2801.

[71] V. Bernard, N. Kaiser and U.-G. Meißner, Phys. Lett. B389(1996) 144 [hep-ph/9607245].

[72] T. Becher and H. Leutwyler, JHEP0106(2001) 017 [hep-ph/0103263].

[73] J. Gasser, H. Leutwyler and M. E. Sainio, Phys. Lett. B253(1991) 260.

[74] M. Hoferichter, C. Ditsche, B. Kubis and U.-G. Meißner,PoSCD 12 (2013) 069 [arXiv:1211.1485
[nucl-th]].

[75] J. Gasser, M. A. Ivanov, E. Lipartia, M. Mojžiš and A. Rusetsky, Eur. Phys. J. C26 (2002) 13
[hep-ph/0206068].

[76] M. Hoferichter, B. Kubis and U.-G. Meißner, Phys. Lett.B 678(2009) 65 [arXiv:0903.3890
[hep-ph]].

[77] M. Hoferichter, B. Kubis and U.-G. Meißner, Nucl. Phys.A 833(2010) 18 [arXiv:0909.4390
[hep-ph]].

[78] M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meißner, Phys. Rev. Lett.115(2015) 092301
[arXiv:1506.04142 [hep-ph]].

[79] N. Fettes and U.-G. Meißner, Nucl. Phys. A676(2000) 311 [hep-ph/0002162].

[80] J. M. Alarcón, J. Martin Camalich and J. A. Oller, Phys. Rev. D85 (2012) 051503 [arXiv:1110.3797
[hep-ph]].

25



P
o
S
(
C
D
1
5
)
0
2
1

πN scattering: from ChPT to Roy–Steiner equations Bastian Kubis and Jacobo Ruiz de Elvira

[81] J. Gasser, Annals Phys.136(1981) 62.

[82] B. Borasoy and U.-G. Meißner, Annals Phys.254(1997) 192 [hep-ph/9607432].

[83] E. E. Jenkins and A. V. Manohar, Phys. Lett. B281(1992) 336.

[84] J. M. Alarcón, L. S. Geng, J. Martin Camalich and J. A. Oller, Phys. Lett. B730(2014) 342
[arXiv:1209.2870 [hep-ph]].

[85] H. Leutwyler, Talk given at the 8th International Workshop on Chiral Dynamics, Pisa, 2015, and
these proceedings.

[86] M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meißner, arXiv:1507.07552 [nucl-th].

[87] N. Fettes, U.-G. Meißner, M. Mojžiš and S. Steininger, Annals Phys.283(2000) 273 [Annals Phys.
288(2001) 249] [hep-ph/0001308].

[88] V. Bernard, Prog. Part. Nucl. Phys.60 (2008) 82 [arXiv:0706.0312 [hep-ph]].

[89] V. Bernard, N. Kaiser and U.-G. Meißner, Int. J. Mod. Phys. E4 (1995) 193 [hep-ph/9501384].

[90] S. Steininger, U.-G. Meißner and N. Fettes, JHEP9809(1998) 008 [hep-ph/9808280].

[91] J. Kambor and M. Mojžiš, JHEP9904(1999) 031 [hep-ph/9901235].

[92] A. Walker-Loudet al., Phys. Rev. D79 (2009) 054502 [arXiv:0806.4549 [hep-lat]].

[93] M. Gonget al. [XQCD Collaboration], Phys. Rev. D88 (2013) 014503 [arXiv:1304.1194 [hep-ph]].

[94] C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis and G.Koutsou, Phys. Rev. D90 (2014) 074501
[arXiv:1406.4310 [hep-lat]].

[95] S. Aoki et al. [PACS-CS Collaboration], Phys. Rev. D79 (2009) 034503 [arXiv:0807.1661
[hep-lat]].

[96] S. Dürret al. [BMW Collaboration], Science322(2008) 1224 [arXiv:0906.3599 [hep-lat]].

[97] A. Abdel-Rehimet al. [ETM Collaboration], arXiv:1507.04936 [hep-lat].

[98] A. Abdel-Rehimet al. [ETM Collaboration], arXiv:1507.05068 [hep-lat].

[99] A. Walker-Loud, PoSLATTICE 2008 (2008) 005 [arXiv:0810.0663 [hep-lat]].

[100] A. Walker-Loud, PoSCD 12 (2013) 017 [arXiv:1304.6341 [hep-lat]].

[101] A. Walker-Loud, PoSLATTICE 2013 (2014) 013 [arXiv:1401.8259 [hep-lat]].

[102] S. R. Beane, Nucl. Phys. B695(2004) 192 [hep-lat/0403030].

[103] J. A. McGovern and M. C. Birse, Phys. Lett. B446(1999) 300 [hep-ph/9807384].

[104] J. A. McGovern and M. C. Birse, Phys. Rev. D74 (2006) 097501 [hep-lat/0608002].

[105] M. R. Schindler, D. Djukanovic, J. Gegelia and S. Scherer, Phys. Lett. B649(2007) 390
[hep-ph/0612164].

[106] M. R. Schindler, D. Djukanovic, J. Gegelia and S. Scherer, Nucl. Phys. A803(2008) 68
[arXiv:0707.4296 [hep-ph]].

26


