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1. Introduction

The idea that the pattern of electroweak symmetry breakiWy$B) could be triggered by
strong dynamics, in a way similar to what happens in QCD, @uaibo turn 40. The flagship for
models of dynamical EWSB was technicolor [1], a scaled-uiva of QCD from the GeV to
the TeV scale. Technicolor was proposed as an alternatitreetoanonical Standard Model (SM)
Higgs scenario and has been always associated with Higglesries. With the discovery of a
light scalar its simplest versions are definitely ruled but,that does not extend to the more general
concept of dynamical EWSB.

In particular, dynamical EWSB scenarios can be easily edddio accommodate light scalars.
Ideas in this direction were proposed already in the mid &0tk models of vacuum misalign-
ment [2]. In those models the Higgs is part of a Goldstoneipiattcoming from an enlarged sym-
metry that gets broken at some scéleThe regular Goldstones become the longitudinal modes of
the SM gauge fields, while the Higgs acquires a mass throughpgoocesses, thus being naturally
light.

An explanation for the lightness of the Higgs is actually smg in the Standard Model and
is one of the main motivations to search for new physics. &lakpectations set this new-physics
scale at the TeV. However, with the present accuracy on Higgplings (roughly at the 10% level)
the nature of both the Higgs and the interactions behind EV§SBmething that is far from being
settled. Both for weakly-coupled and strongly-coupledergtons there exist models which can
satisfactorily explain the existence of a light scalar iratunal way, i.e., through symmetries (most
notably supersymmetry for weakly-coupled scenarios aiftdsstmmetry for strongly-coupled sce-
narios). However, it is also fair to say that the simplessigars of those models sooner or later run
into other sorts of difficulties and presently no model standt as a compelling candidate for new
physics.

A more conservative approach is provided by effective fiblgoties. EFTs have a more
modest scope and do not provide dynamical explanationy. éfeea model-independent tool to
parametrize physics at a certain energy sgal®rovided that the particle content and symmetries
relevant at energies @f(u) are known and that a mass gap up until a cutoéixists, one can build
a meaningful expansion ip/A. EFTs are therefore a tool for phenomenological explonatiche
search for new physics. As soon as new physics is detecteylcdase to be valid and have to be
upgraded.

For weakly-coupled scenarios the corresponding EFT has keewn for a while [3] and
in recent years brought to a firm footing [4]. For stronglypted scenarios the first attempts
were done long ago [5] and later upgraded to include a Hitggsdcalar [6] but a systematic
treatment was lacking until recently [7, 8]. In this paperill weview these recent attempts at a
systematic EFT for dynamical EWSB. As the title of the talkigates, most of the techniques
have a counterpart in the more familiar theory of pions, CHR#®ill however show that there
is an interesting cross-feeding between the two EFTs, apadrcular that the richer dynamical
framework of the electroweak interactions helps illuminegrtain systematic aspects of ChPT in a
different light.

The main message that | will try to convey is that, given thgquted accuracy that will be
reached at the LHC, the EFT presented here is the right taaddoch for new physics during the
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LHC running time. The nonlinear EFT that | will discuss indlgaper is not meant as an EFT of
technicolor models, but rather as an EFT of vacuum misalarindynamics. Interestingly, this

makes this EFT a generalization of the Standard Model the.Standard Model is recovered for a
specific choice of the parameters. The bigger parametee §panined by the nonlinear realization
of EWSB thus provides a framework in which the Higgs hypoghean be tested in a model-

independent way.

2. The Standard Model as a nonlinear EFT

Nonlinear and linear EFTs are different in their systensatiBy nonlinear EFTs | will be
referring to theories with nonrenormalizable interacsi@nd nondecoupling new dynamics. The
distinction between them therefore goes well beyond theesgmtation used for the fields.

As an example, consider the Standard Model with the Higgbldbg and its charge-conjugate
@ rewritten in polar coordinates through

_vehy(0). o _vehy (1
w—ﬂU<1>. (p_\/§U<O> (2.1)

whereU is a 2x 2 matrix collecting the Goldstone modes. With this field fedéon one can
express the Standard Model as

v T h)? = A2 2
+ 7 (DD (142 —v[fiyijUPifjJrh.c.] -G 2.2)

The polar parametrization makes it manifest that the Stahiodel, besides a loc8U(2), x
U(1)y symmetry, is also invariant under a glol&lU(2)gr symmetry. The pattern of spontaneous
symmetry breaking is therefoJ(2), x U (1)y x SU(2)r — SU(2)y x U (1)em, Where the residual
(global)SU(2)y is the so-called custodial symmetry. The biggest advaraétyes field redefinition

is that the radial (Higgs) and angular excitations (Goldstmodes) of the vacuum manifold are
explicitly separated in a gauge-invariant way. The SM carefore be expressed superficially
as a nonlinear theory, but it is obvious that the dynamicsrtaschanged. The theory is still
renormalizable, new physics are decoupled and can be utdeodas an expansion in canonical
dimensions. In particular, one could consider the set of Nithension-six) operators in polar
notation. This would definitely obscure the renormalizgimeperties of the theory, but the Higgs
and the Goldstone modes would still belong to a doublet uStgp), .

The theory becomedynamicallynonlinear, i.e., nonrenormalizable, once the Higgs and the
Goldstones do not belong to the same multiplet. This catydasidone with polar coordinates and
amounts to generalize the Higgs couplings to arbitraryfaoefts. In other words, the Higgs is
demoted to an electroweak singlet. Intuitively, one cankluf it as a two-step procedure: starting
from Eq. (2.2) one integrates out the SM Higgs mode and thestetdes a scalar particle with the
most general couplings to gauge fields and fermions. In aeseabitilanguage we will call this
scalar the Higgs and denote it hythough it should be clear that it does not necessarily sped
to the Standard Model one.
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The result for this more general theory reads

1 1 — — 1
D%Lo = —§<WIJVWIJV> - ZB[J\/BIJV + | 2 L,UJ DL,UJ + éﬁ“hﬁ”h

2
+VZ (DLUDHU )y () V[ @y (MUP-y+he] ~V(h) 2.3)

with

i _ i i

fu(h)=1+ zaﬁ-’ (g) ;o fy(h)y =Yy + ;YLI(IJ) (g) ; V(h) = gza\j’ (\—r:) (2.4)
The absence of arbitrary functionstohext to the Higgs and fermion kinetic terms can be achieved
by judicious field redefinitions [8]. For the gauge kineticnts this is however not the case and
arbitrary powers ofi are in principle allowed. We will assume that Higgs coupdihggauge bosons
are subleading in the EFT expansion (in a way to be explaietmi). This is a phenomenological
requirement in order to avoid too large contributions, ,.e&@h — yy. We will also assume that
the new strong sector preserves CP and custodial symmebrgén to comply with experimental
bounds. Sources of CP and custodial symmetry breaking arertfstricted to the ones already
existing in the Standard Model.

From the procedure we followed, it should be obvious thath@ Standard Model can be
recovered from Eq. (2.3) for a specific choice of parametans!, (ii) the resulting Lagrangian is
in general nonrenormalizable and counterterms will be eedd renormalize it order by order.
Related to the previous point, it is evident that an expansiaanonical dimensions is no longer
valid and in order to be able to properly define the EFT onerfgsts to identify the right expansion
criteria.

The generic dynamical picture to have in mind when consigekq. (2.3) is sketched in
Fig. 1. A generic group is broken spontaneously at a stajenerating a number of Goldstone
modes. Since the EFT is minimal, i.e., we are including ohky particle content that has been
detected, only four Goldstone modes are required. Heavneexes corresponding to these new
(spontaneously broken) interactions appear typically aetitaff scaleN ~ 4rrf. The scalev is
dynamically generated and does not need to coincide WwithWeakly-coupled new physics, if
present, are assumed to appear at higher scales and thdraf@r a negligible impact.

The interplay of the different dynamical scales is therefdescribed by the dimensionless
parameters

V2 f2 1

¢ = 2; gzﬁ’vm (25)

SinceA ~ 4rf, the loop expansion is the natural expansion parameteriothbory, while the
misalignment parametef is a phenomenological input to be determined experimgntallhe
present experimental situation sets an upper bound at kodglks 0.1. As | will argue below,
this uncertainty is too big to be interpreted as a new-plsysftect coming from weakly-coupled
dynamics. Notice thaf is actually the knob that provides a smooth transition betwtbe strongly-
coupled regime allowed by the current experimental precisind the Standard Model, which is
recovered in the limi€ — 0.
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A=dnf

v=f v

Figure 1: Dynamical scales involved in the EFT. The panel in the Ikfsitates the QCD-like scenario in-
carnated by technicolor models. The panel in the right cgpends to scenarios with vacuum misalignment,
where v and f are generically different.

Before getting into the technicalities of power countingt, ine emphasize a nice property
of Eq. (2.3). Since it represents a modified version of théaseector of the Standard Model,
deviations in Higgs couplings can be potentially sizablecdntrast, gauge interactions are SM-
like and potential deviations should first appear at NLO anékpansion. This generic hierarchy for
deviations matches the current experimental status of $dotions, where the level of scrutiny
of LEP for gauge interactions is roughly two orders of magget more precise than what LHC has
achieved for Higgs interactions. Another remarkable priypaf Eq. (2.3) is that while it naturally
allocates room for sizable deviations in the Higgs sectw, EFT is valid even if experimental
precision constrains those deviations to smaller values.

3. Systematics of the EFT expansion

There are two ways one can proceed in order to define the r@yivpcounting for theories
like Eqg. (2.3) and in general for any nonrenormalizable EHTe hard way is to build the NLO
counterterms by absorbing all the one-loop divergencesi@thieory. The most elegant way of
doing so is to build the effective action through the heahkemethod. A more mundane procedure
is to examine all the one-loop topologies and extract by dtida a formula for their superficial
degree of divergence. Since there is only a finite numbertefactions this can always be done.
A particular example of this latter procedure is providedrig. 2.

For the case at hand the structure of any loop diagram in teftine field content is [7, 8]

()" (%)F] [(gv)”g (%)G] [vz(%)B] [(hv)”h (S)H] (3.1)

d:2L+2—%—G—2Vh—Vf—Vg (3.2)

d
AP
/\2L

where

is the degree of divergenc&,G,B,H count the number of external fields whikg the number of
vertices. The first thing to notice is that the degree of gjgace is bounded from below. Actually,
the presence of gauge fields and fermions reduces the defgdieemence of a diagram. This
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Figure 2: Sample diagram illustrating the procedure behind Eq. (3 The superficial divergence of this
diagram is absorbed by a local NLO operator of the fofg (r)2h?.

ensures that the number of counterterms is finite, as onedveoqplect from consistency arguments.
The other thing to notice is that not just fields, but also diags count. This might seem suprising
at first, but is a direct consequence of the loop expansiofovwBewill justify why this has to be
SO.

As a trivial application of Eq. (3.2), consider Eq. (2.3)tjlkeeping the Goldstone interac-
tions. The result should reproduce the power counting afatiperturbation theory, and indeed
one recovers Weinberg’s resuft,= 2L + 2 [9]. Weinberg’s power-counting formula starts from
topological arguments and concludes that the chiral exparis an expansion in derivatives. In
practice this second criterium is what is used in ChPT: onmtsothe number of derivatives and
readily knows the order of an operator.

This suggests that a similar result could be inferred whemgdosons, Higgs and fermion
interactions are reinstated in Eq. (2.3). This brings udhtogecond way of deriving the power
counting. The criterium is to define weights (which we willladiral dimensions) to the elements
in Eg. (2.3) such that all the terms are homogeneous, i.¢e, tha same global weight. Naively one
might think that either there is no solution or there are manyrequiring that the result of ChPT
is reproduced in the right limit it turns out that there is aque prescription, namely [10, 11]

[@;h; Xy]y =0; 0w Ty gyl =1 (3.3)

In hindsight, this result was already imprinted in Eq. (3R&arranging terms one can write

F
2L+2:d+§+G+2vh+vf+vg (3.4)

which shows that the (loop) order of the expansion dependietits, derivatives and couplings
in precisely the way dictated by Eq. (3.3). Chiral dimenalocounting is therefore the weight
prescription that reproduces loop counting. This presioripis unambiguous and unique once the
leading-order Lagrangian of the theory is specified. From(Ed.) one can then build the full set
of operators at any order in the loop expansion [11]. Thisldees explicitly done at NLO [8]. Of
course, the most difficult task is to ensure that the regubiit of operators is an actual basis and
redundancies have been removed.

It should be emphasized that power counting is a way to ozgaam expansiogivena leading-
order Lagrangian. It does not exist as a universal recipeppdyato generic physical systems
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but rather relies on dynamical insight and the identificatid the leading-order operators. For
perturbative systems, this comprises the kinetic term Her fitelds involved plus the dominant
interactions.

As a toy example, consider adding to Eq. (2.3) a self-inteador fermions, such that the
fermionic leading-order piece would take the form

L =—ifpf —AfTf)(fT f) —vEY; (NUPLT (3.5)

From our previous assignments in (3.3), all the terms aredgameously of chiral dimension two
if [A]y = 0. The question is then what prevents fermion bilinears fappearing at leading order
in our Lagrangian. The answer is dynamical consideratidhs: presence of the fermion self-
interactions implies that dynamically its mass is closehto dutoffA, i.e., the fermion would not
be elementary but a heavy baryon of the strong interactiodsas such, it should be integrated out
of the theory. Eq. (3.5) is therefore inconsistent. For amentary fermion, four-fermion operators
arise necessarily as counterterms at NLO, i.e., with twogrewf weak couplings out front.

3.1 Chiral dimensions in ChPT

The power-counting formula that we derived applies gea#lyito nonrenormalizable theories
of fermions, gauge fields and scalars which admit a pertubaikpansion. Since ChPT falls in
this category, it is instructive to reexamine it in the ligiiteq. (3.3).

Before delving into details, a general caveat that one shkekp in mind. The similarities
between QCD and a theory of dynamical EWSB hold to the exteatttioth theories have their
mathematical foundations on nonlinear representatiomsveder, one should bear in mind that in
QCD the Goldstone modes arise through breaking of a gisbéB), x SU(3)r symmetry, while
in the electroweak sector the broken symmetry is local. &nftéimer, the Goldstone modes are
physical and build up the octet of pseudoscalar mesaoiss K's and n), while in the latter the
Goldstone modes give th&y andZ gauge fields a mass. This also implies that there is no analog
of the anomalous Wess-Zumino-Witten Lagrangian in the Efefectroweak interactions, since
gauge interactions should be anomaly-free. For powericmumatters, however, the two theories
fall into the same category.

Let us consider firgt; = 3 ChPT coupled to external sources. At leading order thedragan
reads [12]

f2 f2
Lo= Z(D“UTD“U> +Z<uTx+xTu> (3.6)
whereD,U =g, U —ir U +iUl, andx = 2Bo(s+ip). As long as external sources are nondy-
namical their chiral dimension is arbitrary: their soleeeffis to source the Green’s functions of
the theory. In other words, no matter the chiral dimensimemgito the sources, the contribution to
every Green’s function will be unaffected.

Things are however different when external sources becgmandical, e.g. by adding pion

masses. In that case

x~ i B mg (37
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The usual ChPT prescription [12] correctly seig ~ &'(p), ensuring that the meson propagator
is homogeneous. However, this is traced backio~ ¢(p?). Since quark masses amg ~ yv,
this would suggest that~ ¢ (p?). This makes the counting at the quark level cumbersome: the
kinetic term for quarks would be inhomogeneous, with thesiteisn suppressed. Eq. (3.3) instead
dictates thaty]y = 1= [(q0)]y, while the breaking scalasand f have no chiral dimension. Notice
that this consistently bringsn,|, = 1 while keeping the homogeneity of the Lagrangian both at
the pion and the quark level.

As a second example, consider ChPT with dynamical photoos: tNe leading order is [13]

2 2
Fo= (DDA} + 7 UK+ XU) -~ FRWFH - ESUTQUY (39

whereD, U = g,U +ieA,[Q,U] andQ =diag(2/3,—1/3,—1/3). The last operator is induced by
virtual photons and gives a contribution to the pion potnfiroviding in particular electromag-
netic corrections to pion masses proportional to

o
(M)em ~ € (3.9)

Sinced is loop-induced, all the terms in Eq. (3.8) are actually & same order, i.e., their charac-
teristic energy scale i6. When QED is switched on, it is usually argued that the claxglansion
gets upgraded to a double expansiomdrand p. While this is technically correct, it obscures the
systematics of the chiral expansion. In particular, it i clear what to do if the electric charge
were numerically bigger.

Eq. (3.3) adapted to the present case shows that a doublastxpas actually not required:
consistency of the theory is achieved with a single expansiith chiral weights given by

[Aulx =0; ey =1 [Ou]=1 (3.10)

Notice that with this prescription all the operators in E2|8] are homogeneously of chiral dimen-
sion two. Using Eqg. (3.1) adapted to the present case thesdtlbf NLO counterterms can be
generated, regardless of the size of the electric charge.shbws that the structure of divergences
and counterterms of the theory is independent of the acizmla$e.l Obviously, one can always
use the fact thae is numerically small to neglect certain counterterms arthér simplify the
expansion. For instance, the following sample of operators

(b,uDHUY?, (D, UTDFUYUTQUQ)
UTx+xu)%  eu'QuQE? (3.11)

have all chiral dimension four but have a different numeriitgoact on physical observables.

While at the QCD scale this systematic aspect might appgmeruous, at the electroweak
scale it is of fundamental importance. There the gauge omygphlre not suppressed and the for-
malism of chiral dimensions provides the right descriptidithe physics.

10f course, this makes sense as long as the coupling is stilirpative, but the point is that a much larger value of
ewould not alter the structure and systematics of the EFT.
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A last comment concerns the chiral dimensions for the gaegos Consider ChPT with
external (nondynamical) sources at NLO [12]:

% = L1 (DyUTDHU)2 L, (DU DU (DFUTDYU) +
+ L3(D,UTDHU D, UTDYU) 4 La (D, UTDFUY (U T + xTU) +
+ Ls (DU DHU (UTx + X"U)) +Le (UTx + XTU)?+
+ LUy —xTU 2+ g (xTuxTuU +UTxUTY) —
— iLg(FY"DLUDWUT +FF'DLUTDLU) + Lio(UTFEYUR L) +
+ Hy (FruvFR"” + R ) +Ha (XTX) (3.12)

with
FHY =M1V —oVIH —i[IF V], FEY = aHrY —aVrH —i[rH rY] (3.13)

The external fields$,,r, are typically counted ag’(p). One could naively argue that if gauge
fields do not carry chiral dimensions, as we argued aboveapbeators proportional tib;g andH;
would appear with chiral dimension two, whilg would count as chiral dimension three. This is
not the case. When external gauge fields become physicahtigegoupling has to be specified.
For instance, the operator withg becomes, when a dynamical photon is included,

eFFHUTQUQ) (3.14)

which is clearly of chiral dimension four. The same appliekd andH;.?

Maybe the cleanest example that chiral dimensions are tlieata@ounting in ChPT is pro-
vided when dynamical photons and leptons are also inclu@ied.leading order Lagrangian then
reads

2
.,stosz<DuuTD“u> f<U x+x*u>——FWF“V+e25 UTQUQ) +i Y 5B —my)e
J
(3.15)

The full set of NLO operators has been worked out using the kexael method [14]. With this
method one does not need to specify an explicit power cagintive result already contains the set
of operators that absorb the one-loop divergences. Onexgaicity check that the resulting list
of counterterms given in [14] are consistently of chiral dimaion four.

The previous examples show that chiral dimensions are auaraqd consistent prescription
for nonrenormalizable EFT expansions. The fundamentérdifice between lineass nonlinear
expansions can be seen in the fact that chiral dimensiomotae reduced to a counting in canon-
ical dimensions. A dramatic example is provided by the femid operators

Syl (LyHe),  E(hyuti)(DFUTQUQ) (3.16)

which show up at NLO in ChPT coupled to QED but clearly havéed#nt canonical dimensions.

2H, is actually slightly more subtle: with dynamical fields ikés the form of a kinetic term with two powers of
the gauge coupling. This term becomes redundant, sinca bheaeabsorbed once the photon kinetic term is brought to
canonical form.
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Figure 3: Graphical illustration of the double expansion in loops athé decoupling parametef. As
argued in the main text, the nonlinear Lagrangian amounts tesummation of the vertical lines order by
order in the loop expansion, which is the parameter coritiglthe expansion. Thgexpansion is numerical
(not linked to power counting) and fixed by current experitakdata.

4. The vacuum misalignment mechanism

In the previous sections | have insisted that the nonlindaf E organized in loops, while
the decoupling parametéris basically a knob that can be determined from fitting to expental
data. Sincé€ is not associated with the power counting, it must be im}iciontained inside the
Wilson coefficients of the EFT.

The simplest example to see these ideas at play is the mostedéveloped in [15]. One
considers the grous = SO5) x U (1)x broken toH = SO4) x U(1)x at a scalef. The latter
is isomorphic toSU(2),. x SU(2)r x U (1)x and the Standard Model can be recovered through the
usual pattern of electroweak symmetry breaking at the scalelere | will concentrate on the
bosonic sector of the theory. The fermionic sector is inguarto build a realistic Higgs potential
but it is also more model-dependent and can be skipped ifsopgmarily interested in discussing
the interplay of the dynamical scales.

From the pattern of symmetry breakingfabne generates 4 Goldstone bosbfiswhich build
a vector in the fundamental representatiors@f4). They are usually parametrized as

S =% (X)Zo, o= (014>
whereZ = exp(v/2itAn*/ f) andt” are the broken generators.

In order to bring the notation to the one used in the constmadf the EFT, one can use
the isomorphism betwee®Q4) andSU(2) x SU(2) to express the previous equation in terms of
the SU(2) bidoublet matrixU and a radial Higgs. The isomorphism reddis= haAa = hU with
A = (i,1,). Thus it follows that

h
ha =5 (UAL)

2

10
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and one can expregsas

+
cosh/f

This is the building block from which to build bosonic openat At leading order one finds
f2 e 1 " f2 tp a2 D
Ho= - (DuI'D'T) —V = 59,hd*h+ - (D,U'D u>sm2T—v (4.1)

where the potential is built from the tw®Q(5)-breaking spurions (see [16] for details) and even-
tually takes the form [17]

V = acosh/f —BsirPh/f (4.2)

with o andf such that3 > 0 and|a| < 23 (see also [17] for a concrete realization of the poten-
tial). Under such circumstances there is spontaneous symbreaking and the Higgs acquires a
nontrivial vacuum expectation value. Expanding aroundvéi@iumh = (h) + h, Eq. (4.1) should
match our EFT parametrization, i.e.,

~ ~ 2 ~ ~
Ho= 30ub0Hhi+ (DU DY) fy () -V (R) (4.9

In particular, going to unitary gauge and matching to theggaboson masses one finds thias
given by

V= fsin<—:¢1>

and therefore the decoupling parameter in this model tei@simple formé = sir? (h)/f. In
terms ofé, fy andV can then be expressed as

~ ~ ~ A AN\ 2
fu(ﬁ,f):cos2—h+,/5sin2—h+lsin25:1+2\/1—£<D>+(1—25) <b> +0 (%)
f ¢ f & f v v
(4.4)

and
¥ LR A\* 3-7e (Ao
V(h,E):Errﬁ (\—/) +\/ﬁ<v> +T<V> +0 () (4.5)

In a specific model like the one discussed here the dependdribe Wilson coefficients oi§
can be fully determined. In the EFT ti§edependence is implicit. However, experimentalys
small, so one can expand in it. In this scenario the EFT caedr as a double expansion: the loop
expansion associated with the nonrenormalizability otlle®ry and the numerical expansioréin
The situation is depicted in Fig. 3, where each point is ifiedtby its coordinate$/, ). Vertical
lines in the chart correspond to each order in the loop expan¥he Standard Model corresponds

11
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to the dot in the bottom left corner, i.e., LO both in the lool § expansions, while SM loops are
matched to the horizontal axis.

Correspondingly, notice that the operators belonging eéqoithint (0, 1) areé-suppressed with
respect to the Standard Model. Therefore,§hexpansion functions like an expansion in canonical
dimensions (in inverse powers 6f). As a result the operators 6d,1) can be formally matched
to (a subset of) operators from the basis of canonical difoersix2

In general, the identification of’(§") contributions in the nonlinear EFT can be done by
reexpressing the basis of canonical dimension-2 in polar coordinates using

V2(H,H) = (v+hU (4.6)

The computation o€’ (&) was done in [16]. Technical details about the matching pfocecan be
found there.

Despite the previous formal identification of operatorsha tmatching procedure described
above and the fact that the expansiorf iis a canonical one, the power counting is still the one of
a nondecoupling, nonrenormalizable EFT: one can reprothe&tandard Model by decoupling
the strong new physics, but as longé&ss nonzero the dynamics do not correspond to a weakly-
coupled extension of the Standard Model.

5. EFT-based fit to LHC Higgs data

From a phenomenological point of view, the EW nonlinear EB$ two main virtues: (i) itis
a generalization of the Standard Model that allows to testiggs hypothesis; and (ii) it naturally
implements a hierarchy between Higgs and gauge couplingh, that it can easily accommodate
departures in the former while keeping the latter in agregméth LEP bounds.

Itis important to stress that both points are absent in afig#-T: in an expansion in canonical
dimensions the SM Higgs is assumed to be correct and theref®riations are suppressed by
powers of YA? both in the Higgs and gauge sectors. While the Higgs mightteed out to be the
SM one, from an experimental point of view this assumptioatipresent unjustified: the current
experimental precision on Higgs couplings is around-1%% at the most and even after Run 3 at
the LHC the precision will hardly react(5%).

At Run 1, Higgs couplings have been tested using the soecalfermalism, a signal-strength
parametrization at the level of the decay rates and pramtuctioss sections. Theformalism has
been sometimes criticised as beingaalhocphenomenological parametrization not based on QFT
principles. However, until recently it has not been apptel that it is basically equivalent to the
EW nonlinear EFT at leading order [18]. In order to make tliarection transparent nonlocal
parameters have to be traded by local ones.

Taking into account the processes so far tested at the LMdhlinear EFT in the unitary

3The rest of the dimension-6 operator basis belongs to the (il). Dimension-6 operators are split in two points
because some of them bear a loop suppression, a piece ghatfon that the power-counting still provides.
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Figure 4: Ax? isocontours for a sample of two-dimensional plots with taemeters given in Eq. (5.1) [19].
In all cases, marginalization over the remaining four paeters has been performed.

gauge leads to the following parametrization:

1 h -
— O py
& =20y <m2Nw,1w +52uZ )V f:tgbrcfyfffhﬂg(_],l

2

g h e h

162 oSy o ey
(5.1)

in terms of just 6 parameters. The previous Lagrangian carabity extended to cover processes
like h— Zy, h — up, associated production or double Higgs production, to sietkin Run 2.

The advantages of having an EFT framework behind a phendowoal fitting scheme are
multiple. First, it guarantees that QFT basic rules aregetgu, e.g. gauge invariance. Second,
the scheme can be systematically improved as experimemgeision demands it. For instance, it
is easy to incorporate NLO effects to study shapes in pdatiddiggs processes [19]. Finally, it
allows to have a clear picture of the expected sizes of thificieats. For instance, fdn — ZI*|~
power-counting considerations imply that deviations im shapes are suppressed typically by two
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orders of magnitudé~ 1/167) with respect to deviations in the rate [20]. In the linear E#6th
would be at the same order, with deviations of typically a fecent.

The dynamical information contained in the power countiag be incorporated as priors in
Bayesian fits to experimental data. An example of such a fibkas performed in [19]. A sample
of two-dimensional projections is shown in Fig.4. The resabnfirm that the current precision in
Higgs couplings is at the 18 15% level, with deviations from the Standard Model withi2 &r.

6. Conclusions

Scenarios of dynamical EWSB are still viable candidatespfoysics beyond the Standard
Model. The discovery of the Higgs excludes the simplest nsobat there are extensions that
accommodate a light Higgs-like scalar in a natural way,theough symmetry arguments. Partic-
ularly interesting are dynamical settings with vacuum tigsanent, where the Higgs is a pseudo-
Goldstone boson. In these settings the new strong dynaraitde decoupled, and accordingly
there is a smooth limit where the Standard Model can be reedve

These dynamical ideas can be made model-independent byddmgehem into an EFT for-
malism. The advantage of such an EFT is that it generalizesStandard Model and therefore
provides a formalism to test the Higgs hypothesis. In cehtta a linear EFT of the Standard
Model, deviations in the Higgs sector can be sizable whikpkey gauge interactions well within
LEP bounds. This pattern is a natural consequence of hawsirgrag sector and is naturally imple-
mented in the EFT. Given the current (and prospective) taicgy in Higgs couplings at the LHC,
such an EFT provides an excellent tool for phenomenologittalies. More so since one can show
that the so-called formalism currently used by ATLAS and CMS for testing Higgaiplings can
be embedded within this EFT, thereby acquiring a full-flat@#T basis.

In this write-up | have emphasized the systematics undegylhe construction of such an EFT.
In particular, | have stressed the similarities betweesbinlinear EFT and ChPT with dynamical
gauge fields and fermions, especially from the systemaiiat pd view. EFTs are expansions in
terms ofu /A, with u a typical energy scale amithe cutoff of the theory. In nonrenormalizable
EFTs the organizing principle of the expansion (the poweintiog) is based on a loop expansion,
where NLO counterterms absorb the divergences generatsatiaig order. Careful scrutiny shows
that the loop expansion is equivalent to an expansion irattimensions, understood as weights
on fields and couplings. This correspondence is unique dmsato revisit the ChPT systematics
from a new, more general, perspective.

I have not touched upon phenomenological studies of spgridicesses, where the nonlinear
EFT can give signatures which differ substantially from tres of the linear EFT. As sample
representatives, one could mention an analysis-efZI "1~ [20] and some studies oriented mainly
to gauge boson production at linear colliders [21].

As a closing remark, it is interesting to point out [22] thisioein the EFTs for flavor physics at
hadronic scales, despite the fact that the Higgs boson duegppear explicitly, different patterns
among the Wilson coefficients can discern strong from weakSBWTherefore, even in flavor
factories there is potential to disentangle the natureeflygs boson.
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