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1. Introduction

The idea that the pattern of electroweak symmetry breaking (EWSB) could be triggered by
strong dynamics, in a way similar to what happens in QCD, is about to turn 40. The flagship for
models of dynamical EWSB was technicolor [1], a scaled-up version of QCD from the GeV to
the TeV scale. Technicolor was proposed as an alternative tothe canonical Standard Model (SM)
Higgs scenario and has been always associated with Higgsless theories. With the discovery of a
light scalar its simplest versions are definitely ruled out,but that does not extend to the more general
concept of dynamical EWSB.

In particular, dynamical EWSB scenarios can be easily extended to accommodate light scalars.
Ideas in this direction were proposed already in the mid 80’swith models of vacuum misalign-
ment [2]. In those models the Higgs is part of a Goldstone multiplet coming from an enlarged sym-
metry that gets broken at some scalef . The regular Goldstones become the longitudinal modes of
the SM gauge fields, while the Higgs acquires a mass through loop processes, thus being naturally
light.

An explanation for the lightness of the Higgs is actually missing in the Standard Model and
is one of the main motivations to search for new physics. Naive expectations set this new-physics
scale at the TeV. However, with the present accuracy on Higgscouplings (roughly at the 10% level)
the nature of both the Higgs and the interactions behind EWSBis something that is far from being
settled. Both for weakly-coupled and strongly-coupled extensions there exist models which can
satisfactorily explain the existence of a light scalar in a natural way, i.e., through symmetries (most
notably supersymmetry for weakly-coupled scenarios and shift symmetry for strongly-coupled sce-
narios). However, it is also fair to say that the simplest versions of those models sooner or later run
into other sorts of difficulties and presently no model stands out as a compelling candidate for new
physics.

A more conservative approach is provided by effective field theories. EFTs have a more
modest scope and do not provide dynamical explanations: they are a model-independent tool to
parametrize physics at a certain energy scaleµ . Provided that the particle content and symmetries
relevant at energies ofO(µ) are known and that a mass gap up until a cutoffΛ exists, one can build
a meaningful expansion inµ/Λ. EFTs are therefore a tool for phenomenological exploration in the
search for new physics. As soon as new physics is detected, they cease to be valid and have to be
upgraded.

For weakly-coupled scenarios the corresponding EFT has been known for a while [3] and
in recent years brought to a firm footing [4]. For strongly-coupled scenarios the first attempts
were done long ago [5] and later upgraded to include a Higgs-like scalar [6] but a systematic
treatment was lacking until recently [7, 8]. In this paper I will review these recent attempts at a
systematic EFT for dynamical EWSB. As the title of the talk indicates, most of the techniques
have a counterpart in the more familiar theory of pions, ChPT. I will however show that there
is an interesting cross-feeding between the two EFTs, and inparticular that the richer dynamical
framework of the electroweak interactions helps illuminate certain systematic aspects of ChPT in a
different light.

The main message that I will try to convey is that, given the projected accuracy that will be
reached at the LHC, the EFT presented here is the right tool tosearch for new physics during the
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LHC running time. The nonlinear EFT that I will discuss in this paper is not meant as an EFT of
technicolor models, but rather as an EFT of vacuum misalignment dynamics. Interestingly, this
makes this EFT a generalization of the Standard Model, i.e.,the Standard Model is recovered for a
specific choice of the parameters. The bigger parameter space spanned by the nonlinear realization
of EWSB thus provides a framework in which the Higgs hypothesis can be tested in a model-
independent way.

2. The Standard Model as a nonlinear EFT

Nonlinear and linear EFTs are different in their systematics. By nonlinear EFTs I will be
referring to theories with nonrenormalizable interactions and nondecoupling new dynamics. The
distinction between them therefore goes well beyond the representation used for the fields.

As an example, consider the Standard Model with the Higgs doubletφ and its charge-conjugate
φ̃ rewritten in polar coordinates through

φ =
v+h√

2
U

(

0
1

)

; φ̃ =
v+h√

2
U

(

1
0

)

(2.1)

whereU is a 2× 2 matrix collecting the Goldstone modes. With this field redefinition one can
express the Standard Model as

LSM =−1
2
〈WµνWµν〉− 1

4
BµνBµν + i f̄ j 6D f j +

1
2

∂µh∂ µh

+
v2

4
〈DµUDµU†〉

(

1+
h
v

)2

−v
[

f̄iyi jUP± f j +h.c.
]

− λ
4
(h2−v2)2 (2.2)

The polar parametrization makes it manifest that the Standard Model, besides a localSU(2)L ×
U(1)Y symmetry, is also invariant under a globalSU(2)R symmetry. The pattern of spontaneous
symmetry breaking is thereforeSU(2)L×U(1)Y×SU(2)R→SU(2)V ×U(1)em, where the residual
(global)SU(2)V is the so-called custodial symmetry. The biggest advantageof this field redefinition
is that the radial (Higgs) and angular excitations (Goldstone modes) of the vacuum manifold are
explicitly separated in a gauge-invariant way. The SM can therefore be expressed superficially
as a nonlinear theory, but it is obvious that the dynamics hasnot changed. The theory is still
renormalizable, new physics are decoupled and can be introduced as an expansion in canonical
dimensions. In particular, one could consider the set of NLO(dimension-six) operators in polar
notation. This would definitely obscure the renormalizableproperties of the theory, but the Higgs
and the Goldstone modes would still belong to a doublet underSU(2)L.

The theory becomesdynamicallynonlinear, i.e., nonrenormalizable, once the Higgs and the
Goldstones do not belong to the same multiplet. This can easily be done with polar coordinates and
amounts to generalize the Higgs couplings to arbitrary coefficients. In other words, the Higgs is
demoted to an electroweak singlet. Intuitively, one can think of it as a two-step procedure: starting
from Eq. (2.2) one integrates out the SM Higgs mode and then reinstates a scalar particle with the
most general couplings to gauge fields and fermions. In an abuse of language we will call this
scalar the Higgs and denote it byh, though it should be clear that it does not necessarily correspond
to the Standard Model one.
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The result for this more general theory reads

LLO =−1
2
〈WµνWµν〉− 1

4
BµνBµν + i ∑

j

ψ̄ j 6Dψ j +
1
2

∂µh∂ µh

+
v2

4
〈DµUDµU†〉 fU(h)−v

[

ψ̄ fψ(h)UP±ψ +h.c.
]

−V(h) (2.3)

with

fU(h) = 1+∑
j

aU
j

(

h
v

) j

; fψ(h) =Yψ +∑
j

Y( j)
ψ

(

h
v

) j

; V(h) = ∑
j≥2

aV
j

(

h
v

) j

(2.4)

The absence of arbitrary functions ofh next to the Higgs and fermion kinetic terms can be achieved
by judicious field redefinitions [8]. For the gauge kinetic terms this is however not the case and
arbitrary powers ofhare in principle allowed. We will assume that Higgs couplings to gauge bosons
are subleading in the EFT expansion (in a way to be explained below). This is a phenomenological
requirement in order to avoid too large contributions, e.g., to h → γγ . We will also assume that
the new strong sector preserves CP and custodial symmetry inorder to comply with experimental
bounds. Sources of CP and custodial symmetry breaking are then restricted to the ones already
existing in the Standard Model.

From the procedure we followed, it should be obvious that (i)the Standard Model can be
recovered from Eq. (2.3) for a specific choice of parameters;and (ii) the resulting Lagrangian is
in general nonrenormalizable and counterterms will be needed to renormalize it order by order.
Related to the previous point, it is evident that an expansion in canonical dimensions is no longer
valid and in order to be able to properly define the EFT one firstneeds to identify the right expansion
criteria.

The generic dynamical picture to have in mind when considering Eq. (2.3) is sketched in
Fig. 1. A generic group is broken spontaneously at a scalef generating a number of Goldstone
modes. Since the EFT is minimal, i.e., we are including only the particle content that has been
detected, only four Goldstone modes are required. Heavy resonances corresponding to these new
(spontaneously broken) interactions appear typically at acutoff scaleΛ ∼ 4π f . The scalev is
dynamically generated and does not need to coincide withf . Weakly-coupled new physics, if
present, are assumed to appear at higher scales and therefore have a negligible impact.

The interplay of the different dynamical scales is therefore described by the dimensionless
parameters

ξ =
v2

f 2 ; ℓ=
f 2

Λ2 ∼ 1
16π2 (2.5)

SinceΛ ∼ 4π f , the loop expansion is the natural expansion parameter of this theory, while the
misalignment parameterξ is a phenomenological input to be determined experimentally. The
present experimental situation sets an upper bound at roughly ξ . 0.1. As I will argue below,
this uncertainty is too big to be interpreted as a new-physics effect coming from weakly-coupled
dynamics. Notice thatξ is actually the knob that provides a smooth transition between the strongly-
coupled regime allowed by the current experimental precision and the Standard Model, which is
recovered in the limitξ → 0.
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v = f

Λ = 4πf

Λ = 4πf

f

v

Figure 1: Dynamical scales involved in the EFT. The panel in the left illustrates the QCD-like scenario in-
carnated by technicolor models. The panel in the right corresponds to scenarios with vacuum misalignment,
where v and f are generically different.

Before getting into the technicalities of power counting, let me emphasize a nice property
of Eq. (2.3). Since it represents a modified version of the scalar sector of the Standard Model,
deviations in Higgs couplings can be potentially sizable. In contrast, gauge interactions are SM-
like and potential deviations should first appear at NLO in the expansion. This generic hierarchy for
deviations matches the current experimental status of SM interactions, where the level of scrutiny
of LEP for gauge interactions is roughly two orders of magnitude more precise than what LHC has
achieved for Higgs interactions. Another remarkable property of Eq. (2.3) is that while it naturally
allocates room for sizable deviations in the Higgs sector, the EFT is valid even if experimental
precision constrains those deviations to smaller values.

3. Systematics of the EFT expansion

There are two ways one can proceed in order to define the right power counting for theories
like Eq. (2.3) and in general for any nonrenormalizable EFT.The hard way is to build the NLO
counterterms by absorbing all the one-loop divergences of the theory. The most elegant way of
doing so is to build the effective action through the heat kernel method. A more mundane procedure
is to examine all the one-loop topologies and extract by induction a formula for their superficial
degree of divergence. Since there is only a finite number of interactions this can always be done.
A particular example of this latter procedure is provided inFig. 2.

For the case at hand the structure of any loop diagram in termsof the field content is [7, 8]

∆ =
pd

Λ2L

[

(yv)ν f

(

Ψ
v

)F
][

(gv)νg

(

Xµν

v

)G
][

v2
(ϕ

v

)B
][

(hv)2νh

(

h
v

)H
]

(3.1)

where

d = 2L+2− F
2
−G−2νh−ν f −νg (3.2)

is the degree of divergence.F,G,B,H count the number of external fields whileν j the number of
vertices. The first thing to notice is that the degree of divergence is bounded from below. Actually,
the presence of gauge fields and fermions reduces the degree of divergence of a diagram. This
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Figure 2: Sample diagram illustrating the procedure behind Eq. (3.1). The superficial divergence of this
diagram is absorbed by a local NLO operator of the form(ψ̄LψR)

2h2.

ensures that the number of counterterms is finite, as one would expect from consistency arguments.
The other thing to notice is that not just fields, but also couplings count. This might seem suprising
at first, but is a direct consequence of the loop expansion. Below I will justify why this has to be
so.

As a trivial application of Eq. (3.2), consider Eq. (2.3) just keeping the Goldstone interac-
tions. The result should reproduce the power counting of chiral perturbation theory, and indeed
one recovers Weinberg’s result,d = 2L+ 2 [9]. Weinberg’s power-counting formula starts from
topological arguments and concludes that the chiral expansion is an expansion in derivatives. In
practice this second criterium is what is used in ChPT: one counts the number of derivatives and
readily knows the order of an operator.

This suggests that a similar result could be inferred when gauge bosons, Higgs and fermion
interactions are reinstated in Eq. (2.3). This brings us to the second way of deriving the power
counting. The criterium is to define weights (which we will call chiral dimensions) to the elements
in Eq. (2.3) such that all the terms are homogeneous, i.e., have the same global weight. Naively one
might think that either there is no solution or there are many, but requiring that the result of ChPT
is reproduced in the right limit it turns out that there is a unique prescription, namely [10, 11]

[φ ;h;Xµ ]χ = 0; [∂µ ; ψ̄Γψ ;g;y]χ = 1 (3.3)

In hindsight, this result was already imprinted in Eq. (3.2). Rearranging terms one can write

2L+2= d+
F
2
+G+2νh+ν f +νg (3.4)

which shows that the (loop) order of the expansion depends onfields, derivatives and couplings
in precisely the way dictated by Eq. (3.3). Chiral dimensional counting is therefore the weight
prescription that reproduces loop counting. This prescription is unambiguous and unique once the
leading-order Lagrangian of the theory is specified. From Eq. (3.1) one can then build the full set
of operators at any order in the loop expansion [11]. This hasbeen explicitly done at NLO [8]. Of
course, the most difficult task is to ensure that the resulting set of operators is an actual basis and
redundancies have been removed.

It should be emphasized that power counting is a way to organize an expansiongivena leading-
order Lagrangian. It does not exist as a universal recipe to apply to generic physical systems
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but rather relies on dynamical insight and the identification of the leading-order operators. For
perturbative systems, this comprises the kinetic term for the fields involved plus the dominant
interactions.

As a toy example, consider adding to Eq. (2.3) a self-interaction for fermions, such that the
fermionic leading-order piece would take the form

L =−i f̄ 6D f −λ ( f̄ Γ f )( f̄ Γ f )−vf̄Yf (h)UP± f (3.5)

From our previous assignments in (3.3), all the terms are homogeneously of chiral dimension two
if [λ ]χ = 0. The question is then what prevents fermion bilinears fromappearing at leading order
in our Lagrangian. The answer is dynamical considerations:the presence of the fermion self-
interactions implies that dynamically its mass is close to the cutoffΛ, i.e., the fermion would not
be elementary but a heavy baryon of the strong interactions and, as such, it should be integrated out
of the theory. Eq. (3.5) is therefore inconsistent. For an elementary fermion, four-fermion operators
arise necessarily as counterterms at NLO, i.e., with two powers of weak couplings out front.

3.1 Chiral dimensions in ChPT

The power-counting formula that we derived applies generically to nonrenormalizable theories
of fermions, gauge fields and scalars which admit a perturbative expansion. Since ChPT falls in
this category, it is instructive to reexamine it in the lightof Eq. (3.3).

Before delving into details, a general caveat that one should keep in mind. The similarities
between QCD and a theory of dynamical EWSB hold to the extent that both theories have their
mathematical foundations on nonlinear representations. However, one should bear in mind that in
QCD the Goldstone modes arise through breaking of a globalSU(3)L ×SU(3)R symmetry, while
in the electroweak sector the broken symmetry is local. In the former, the Goldstone modes are
physical and build up the octet of pseudoscalar mesons (π ’s, K’s andη), while in the latter the
Goldstone modes give theW andZ gauge fields a mass. This also implies that there is no analog
of the anomalous Wess-Zumino-Witten Lagrangian in the EFT for electroweak interactions, since
gauge interactions should be anomaly-free. For power-counting matters, however, the two theories
fall into the same category.

Let us consider firstnf = 3 ChPT coupled to external sources. At leading order the Lagrangian
reads [12]

LLO =
f 2

4
〈DµU†DµU〉+ f 2

4
〈U†χ + χ†U〉 (3.6)

whereDµU = ∂µU − i r µU + iU l µ andχ = 2B0 (s+ i p). As long as external sources are nondy-
namical their chiral dimension is arbitrary: their sole effect is to source the Green’s functions of
the theory. In other words, no matter the chiral dimension given to the sources, the contribution to
every Green’s function will be unaffected.

Things are however different when external sources become dynamical, e.g. by adding pion
masses. In that case

χ ∼ m2
π ∼ 〈q̄q〉

f 2 mq (3.7)
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The usual ChPT prescription [12] correctly setsmπ ∼ O(p), ensuring that the meson propagator
is homogeneous. However, this is traced back tomq ∼ O(p2). Since quark masses aremq ∼ yv,
this would suggest thaty ∼ O(p2). This makes the counting at the quark level cumbersome: the
kinetic term for quarks would be inhomogeneous, with the mass term suppressed. Eq. (3.3) instead
dictates that[y]χ = 1= [〈q̄q〉]χ , while the breaking scalesv and f have no chiral dimension. Notice
that this consistently brings[mπ ]χ = 1 while keeping the homogeneity of the Lagrangian both at
the pion and the quark level.

As a second example, consider ChPT with dynamical photons. Now the leading order is [13]

LLO =
f 2

4
〈DµU†DµU〉+ f 2

4
〈U†χ + χ†U〉− 1

4
FµνFµν +e2δ 〈U†QUQ〉 (3.8)

whereDµU = ∂µU + ieAµ [Q,U ] andQ=diag(2/3,−1/3,−1/3). The last operator is induced by
virtual photons and gives a contribution to the pion potential, providing in particular electromag-
netic corrections to pion masses proportional to

(m2
π)em∼ e2 δ

f 2 (3.9)

Sinceδ is loop-induced, all the terms in Eq. (3.8) are actually of the same order, i.e., their charac-
teristic energy scale isf . When QED is switched on, it is usually argued that the chiralexpansion
gets upgraded to a double expansion ine2 andp. While this is technically correct, it obscures the
systematics of the chiral expansion. In particular, it is not clear what to do if the electric charge
were numerically bigger.

Eq. (3.3) adapted to the present case shows that a double expansion is actually not required:
consistency of the theory is achieved with a single expansion, with chiral weights given by

[Aµ ]χ = 0; [e]χ = 1; [∂µ ] = 1 (3.10)

Notice that with this prescription all the operators in Eq. (3.8) are homogeneously of chiral dimen-
sion two. Using Eq. (3.1) adapted to the present case the fullset of NLO counterterms can be
generated, regardless of the size of the electric charge. This shows that the structure of divergences
and counterterms of the theory is independent of the actual size of e.1 Obviously, one can always
use the fact thate is numerically small to neglect certain counterterms and further simplify the
expansion. For instance, the following sample of operators

〈DµU†DµU〉2, e2〈DµU†DµU〉〈U†QUQ〉
〈U†χ + χ†U〉2, e4〈U†QUQ〉2 (3.11)

have all chiral dimension four but have a different numerical impact on physical observables.

While at the QCD scale this systematic aspect might appear superfluous, at the electroweak
scale it is of fundamental importance. There the gauge couplings are not suppressed and the for-
malism of chiral dimensions provides the right descriptionof the physics.

1Of course, this makes sense as long as the coupling is still perturbative, but the point is that a much larger value of
e would not alter the structure and systematics of the EFT.
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A last comment concerns the chiral dimensions for the gauge sector. Consider ChPT with
external (nondynamical) sources at NLO [12]:

L4 = L1〈DµU†DµU〉2+L2〈DµU†DνU〉〈DµU†DνU〉+
+ L3〈DµU†DµU DνU†DνU〉+L4〈DµU†DµU〉〈U†χ + χ†U〉+
+ L5〈DµU†DµU (U†χ + χ†U)〉+L6〈U†χ + χ†U〉2+

+ L7〈U†χ − χ†U〉2+L8〈χ†Uχ†U +U†χU†χ〉−
− iL9〈Fµν

R DµUDνU†+Fµν
L DµU†DνU〉+L10〈U†Fµν

R UFLµν〉+
+ H1〈FRµνF µν

R +FLµνFµν
L 〉+H2〈χ†χ〉 (3.12)

with
Fµν

L = ∂ µ lν −∂ ν l µ − i [l µ , lν ]; Fµν
R = ∂ µ rν −∂ ν rµ − i [rµ , rν ] (3.13)

The external fieldslµ , rµ are typically counted asO(p). One could naively argue that if gauge
fields do not carry chiral dimensions, as we argued above, theoperators proportional toL10 andH1

would appear with chiral dimension two, whileL9 would count as chiral dimension three. This is
not the case. When external gauge fields become physical the gauge coupling has to be specified.
For instance, the operator withL10 becomes, when a dynamical photon is included,

e2FµνFµν〈U†QUQ〉 (3.14)

which is clearly of chiral dimension four. The same applies to L9 andH1.2

Maybe the cleanest example that chiral dimensions are the correct counting in ChPT is pro-
vided when dynamical photons and leptons are also included.The leading order Lagrangian then
reads

LLO =
f 2

4
〈DµU†DµU〉+ f 2

4
〈U†χ + χ†U〉− 1

4
FµνFµν +e2δ 〈U†QUQ〉+ i ∑

j

ℓ̄ j(6D−mℓ)ℓ j

(3.15)

The full set of NLO operators has been worked out using the heat kernel method [14]. With this
method one does not need to specify an explicit power counting: the result already contains the set
of operators that absorb the one-loop divergences. One can explicitly check that the resulting list
of counterterms given in [14] are consistently of chiral dimension four.

The previous examples show that chiral dimensions are a unique and consistent prescription
for nonrenormalizable EFT expansions. The fundamental difference between linearvs nonlinear
expansions can be seen in the fact that chiral dimensions cannot be reduced to a counting in canon-
ical dimensions. A dramatic example is provided by the fermionic operators

e2(ℓ̄iγµℓi)(ℓ̄ jγµℓ j), e2(ℓ̄iγµℓi)〈DµU†QUQ〉 (3.16)

which show up at NLO in ChPT coupled to QED but clearly have different canonical dimensions.

2H1 is actually slightly more subtle: with dynamical fields it takes the form of a kinetic term with two powers of
the gauge coupling. This term becomes redundant, since it can be reabsorbed once the photon kinetic term is brought to
canonical form.
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ξ
d−4

2

ℓ

d

χ

ξ0

ξ1

ξ2

4

6

8
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Figure 3: Graphical illustration of the double expansion in loops andthe decoupling parameterξ . As
argued in the main text, the nonlinear Lagrangian amounts toa resummation of the vertical lines order by
order in the loop expansion, which is the parameter controlling the expansion. Theξ expansion is numerical
(not linked to power counting) and fixed by current experimental data.

4. The vacuum misalignment mechanism

In the previous sections I have insisted that the nonlinear EFT is organized in loops, while
the decoupling parameterξ is basically a knob that can be determined from fitting to experimental
data. Sinceξ is not associated with the power counting, it must be implicitly contained inside the
Wilson coefficients of the EFT.

The simplest example to see these ideas at play is the model first developed in [15]. One
considers the groupG = SO(5)×U(1)X broken toH = SO(4)×U(1)X at a scalef . The latter
is isomorphic toSU(2)L ×SU(2)R×U(1)X and the Standard Model can be recovered through the
usual pattern of electroweak symmetry breaking at the scalev. Here I will concentrate on the
bosonic sector of the theory. The fermionic sector is important to build a realistic Higgs potential
but it is also more model-dependent and can be skipped if one is primarily interested in discussing
the interplay of the dynamical scales.

From the pattern of symmetry breaking atf one generates 4 Goldstone bosonshA, which build
a vector in the fundamental representation ofSO(4). They are usually parametrized as

Σ(hA) = U (x)Σ0, Σ0 =

(

04

1

)

whereU = exp(
√

2itAhA/ f ) andtA are the broken generators.
In order to bring the notation to the one used in the construction of the EFT, one can use

the isomorphism betweenSO(4) andSU(2)×SU(2) to express the previous equation in terms of
the SU(2) bidoublet matrixU and a radial Higgs. The isomorphism readsH = hAλA ≡ hU with
~λ = (i~σ ,12). Thus it follows that

hA =
h
2
〈Uλ †

A〉

10
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and one can expressΣ as

Σ(h,U) =





〈Uλ †
A〉

2
sinh/ f

cosh/ f





This is the building block from which to build bosonic operators. At leading order one finds

LLO =
f 2

2
〈DµΣ†DµΣ〉−V =

1
2

∂µh∂ µh+
f 2

4
〈DµU†DµU〉sin2 h

f
−V (4.1)

where the potential is built from the twoSO(5)-breaking spurions (see [16] for details) and even-
tually takes the form [17]

V = α cosh/ f −β sin2 h/ f (4.2)

with α andβ such thatβ > 0 and|α | ≤ 2β (see also [17] for a concrete realization of the poten-
tial). Under such circumstances there is spontaneous symmetry breaking and the Higgs acquires a
nontrivial vacuum expectation value. Expanding around thevacuum,h= 〈h〉+ ĥ, Eq. (4.1) should
match our EFT parametrization, i.e.,

LLO =
1
2

∂µ ĥ∂ µ ĥ+
v2

4
〈DµU†DµU〉 fU(ĥ)−V(ĥ) (4.3)

In particular, going to unitary gauge and matching to the gauge boson masses one finds thatv is
given by

v= f sin
〈h〉
f

and therefore the decoupling parameter in this model takes the simple formξ = sin2〈h〉/ f . In
terms ofξ , fU andV can then be expressed as

fU(ĥ,ξ ) = cos
2ĥ
f
+

√

1−ξ
ξ

sin
2ĥ
f
+

1
ξ

sin2 ĥ
f
= 1+2

√

1−ξ

(

ĥ
v

)

+(1−2ξ )

(

ĥ
v

)2

+O
(

ĥ3)

(4.4)

and

V(ĥ,ξ ) =
v2

2
m2

h





(

ĥ
v

)2

+
√

1−ξ

(

ĥ
v

)3

+
3−7ξ

12

(

ĥ
v

)4

+O
(

ĥ5)



 (4.5)

In a specific model like the one discussed here the dependenceof the Wilson coefficients onξ
can be fully determined. In the EFT theξ dependence is implicit. However, experimentallyξ is
small, so one can expand in it. In this scenario the EFT can be seen as a double expansion: the loop
expansion associated with the nonrenormalizability of thetheory and the numerical expansion inξ .
The situation is depicted in Fig. 3, where each point is identified by its coordinates(ℓ,ξ ). Vertical
lines in the chart correspond to each order in the loop expansion. The Standard Model corresponds
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to the dot in the bottom left corner, i.e., LO both in the loop and ξ expansions, while SM loops are
matched to the horizontal axis.

Correspondingly, notice that the operators belonging to the point(0,1) areξ -suppressed with
respect to the Standard Model. Therefore, theξ expansion functions like an expansion in canonical
dimensions (in inverse powers off 2). As a result the operators of(0,1) can be formally matched
to (a subset of) operators from the basis of canonical dimension six.3

In general, the identification ofO(ξ n) contributions in the nonlinear EFT can be done by
reexpressing the basis of canonical dimension 2n+4 in polar coordinates using

√
2(H̃,H) = (v+h)U (4.6)

The computation ofO(ξ ) was done in [16]. Technical details about the matching procedure can be
found there.

Despite the previous formal identification of operators in the matching procedure described
above and the fact that the expansion inξ is a canonical one, the power counting is still the one of
a nondecoupling, nonrenormalizable EFT: one can reproducethe Standard Model by decoupling
the strong new physics, but as long asξ is nonzero the dynamics do not correspond to a weakly-
coupled extension of the Standard Model.

5. EFT-based fit to LHC Higgs data

From a phenomenological point of view, the EW nonlinear EFT has two main virtues: (i) it is
a generalization of the Standard Model that allows to test the Higgs hypothesis; and (ii) it naturally
implements a hierarchy between Higgs and gauge couplings, such that it can easily accommodate
departures in the former while keeping the latter in agreement with LEP bounds.

It is important to stress that both points are absent in a linear EFT: in an expansion in canonical
dimensions the SM Higgs is assumed to be correct and therefore deviations are suppressed by
powers of 1/Λ2 both in the Higgs and gauge sectors. While the Higgs might well turn out to be the
SM one, from an experimental point of view this assumption isat present unjustified: the current
experimental precision on Higgs couplings is around 10−15% at the most and even after Run 3 at
the LHC the precision will hardly reachO(5%).

At Run 1, Higgs couplings have been tested using the so-called κ formalism, a signal-strength
parametrization at the level of the decay rates and production cross sections. Theκ formalism has
been sometimes criticised as being anad hocphenomenological parametrization not based on QFT
principles. However, until recently it has not been appreciated that it is basically equivalent to the
EW nonlinear EFT at leading order [18]. In order to make this connection transparent nonlocal
parameters have to be traded by local ones.

Taking into account the processes so far tested at the LHC, the nonlinear EFT in the unitary

3The rest of the dimension-6 operator basis belongs to the point (1,1). Dimension-6 operators are split in two points
because some of them bear a loop suppression, a piece of information that the power-counting still provides.

12



P
o
S
(
C
D
1
5
)
0
3
1

Chiral methods at the electroweak scale Oscar Catà

Figure 4: ∆χ2 isocontours for a sample of two-dimensional plots with the parameters given in Eq. (5.1) [19].
In all cases, marginalization over the remaining four parameters has been performed.

gauge leads to the following parametrization:

L = 2cV

(

m2
WWµWµ +

1
2

ZµZµ
)

h
v
− ∑

f=t,b,τ
cf yf f̄ f h+cgg

g2
s

16π2 GµνGµν h
v
+cγγ

e2

16π2 FµνFµν h
v

(5.1)

in terms of just 6 parameters. The previous Lagrangian can beeasily extended to cover processes
like h→ Zγ , h→ µµ , associated production or double Higgs production, to be tested in Run 2.

The advantages of having an EFT framework behind a phenomenological fitting scheme are
multiple. First, it guarantees that QFT basic rules are respected, e.g. gauge invariance. Second,
the scheme can be systematically improved as experimental precision demands it. For instance, it
is easy to incorporate NLO effects to study shapes in particular Higgs processes [19]. Finally, it
allows to have a clear picture of the expected sizes of the coefficients. For instance, forh→ Zl+l−

power-counting considerations imply that deviations in the shapes are suppressed typically by two
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orders of magnitude(∼ 1/16π2) with respect to deviations in the rate [20]. In the linear EFTboth
would be at the same order, with deviations of typically a fewpercent.

The dynamical information contained in the power counting can be incorporated as priors in
Bayesian fits to experimental data. An example of such a fit hasbeen performed in [19]. A sample
of two-dimensional projections is shown in Fig.4. The results confirm that the current precision in
Higgs couplings is at the 10−15% level, with deviations from the Standard Model within 1-2 σ .

6. Conclusions

Scenarios of dynamical EWSB are still viable candidates forphysics beyond the Standard
Model. The discovery of the Higgs excludes the simplest models but there are extensions that
accommodate a light Higgs-like scalar in a natural way, i.e.through symmetry arguments. Partic-
ularly interesting are dynamical settings with vacuum misalignment, where the Higgs is a pseudo-
Goldstone boson. In these settings the new strong dynamics can be decoupled, and accordingly
there is a smooth limit where the Standard Model can be recovered.

These dynamical ideas can be made model-independent by embedding them into an EFT for-
malism. The advantage of such an EFT is that it generalizes the Standard Model and therefore
provides a formalism to test the Higgs hypothesis. In contrast to a linear EFT of the Standard
Model, deviations in the Higgs sector can be sizable while keeping gauge interactions well within
LEP bounds. This pattern is a natural consequence of having astrong sector and is naturally imple-
mented in the EFT. Given the current (and prospective) uncertainty in Higgs couplings at the LHC,
such an EFT provides an excellent tool for phenomenologicalstudies. More so since one can show
that the so-calledκ formalism currently used by ATLAS and CMS for testing Higgs couplings can
be embedded within this EFT, thereby acquiring a full-fledged QFT basis.

In this write-up I have emphasized the systematics underlying the construction of such an EFT.
In particular, I have stressed the similarities between this nonlinear EFT and ChPT with dynamical
gauge fields and fermions, especially from the systematic point of view. EFTs are expansions in
terms ofµ/Λ, with µ a typical energy scale andΛ the cutoff of the theory. In nonrenormalizable
EFTs the organizing principle of the expansion (the power counting) is based on a loop expansion,
where NLO counterterms absorb the divergences generated atleading order. Careful scrutiny shows
that the loop expansion is equivalent to an expansion in chiral dimensions, understood as weights
on fields and couplings. This correspondence is unique and allows to revisit the ChPT systematics
from a new, more general, perspective.

I have not touched upon phenomenological studies of specificprocesses, where the nonlinear
EFT can give signatures which differ substantially from theones of the linear EFT. As sample
representatives, one could mention an analysis ofh→ Zl+l− [20] and some studies oriented mainly
to gauge boson production at linear colliders [21].

As a closing remark, it is interesting to point out [22] that also in the EFTs for flavor physics at
hadronic scales, despite the fact that the Higgs boson does not appear explicitly, different patterns
among the Wilson coefficients can discern strong from weak EWSB. Therefore, even in flavor
factories there is potential to disentangle the nature of the Higgs boson.
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