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In this talk we review our recent work on the electromagnetit form factor in a model-
independent framework known as the method of unitarity lbisurOur study was motivated by
the discrepancies noted recently between the theoretié@milations of the form factor based on
dispersion relations and certain experimental data medgtuwm the decaw — m°y*. We have
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lower bounds on the modulus of thart form factor in the region below thert threshold. The
results confirm the existence of a disagreement betweerrdisp theory and experimental data
on thecwr form factor around 0.6 GeV.
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1. Introduction

There is renewed interest in the transition form factorsgsftimesons [1], partly because the
pseudoscalar?, n, n’) pole terms constitute some of the most important coniobstto hadronic
light-by-light scattering, which enters the standard niquediction for the muon’s anomalous
magnetic moment (see [2] and references therein). Somewf tdan be measured in decays such
asw— 100 orp— nete.

The present contribution is based on the work reported imgbent publications [3, 4]. The
motivation of these studies was the fact that recent digmeteeatments [5, 6] of theort elec-
tromagnetic form factoff,(t) are in disagreement with experimental data in the regionrato
0.6GeV [7, 8, 9], which show strong deviations from even appnate vector-meson-dominance
behavior [10] and descriptions based on effective field ihgdl, 12]. The dispersive method
uses unitarity, which allows one to express the discortinoii the form factor in terms of the P
partial wave of the processmr — wrt [13, 6] and the pion electromagnetic form factor, quanti-
ties determined with precision. Strictly speaking, thistien is valid only in the elastic region,
4me. <t < 16m2. Phenomenologically, it is known that the elastic regimpragimately extends
up to wrt thresholdt, = (my, + my)?, above which the inelasticity in the P-wave pion—pion scat-
tering is assumed to be dominated by tha intermediate state [13]. However, due to the lack
of information on the discontinuity in the inelastic regiom previous studies it was assumed that
elastic unitarity is valid also at higher energies in theleation of the dispersion integral. This
assumption can affect the precision of the theoreticatrtreat.

In order to avoid the assumption above we have exploitednaltee information on the form
factor abovet,. In Ref. [3] we have used a method proposed originally by ©kji] (before
the advent of QCD), which leads to bounds on form factors Iptaiting the analyticity and the
positivity properties of the spectral function of a suiblrrent—current correlator. The method
has come to be known asethod of unitarity boundsand has been resuscitated in the QCD era
(for a review and more references see [15, 16]). In the ptesese we use a dispersion relation for
the polarization function of two isovector vector currem@iculated by operator product expansion
(OPE) in the Euclidean region, and exploit unitarity for fpectral function. Includingrrrandwrt
states in the unitarity sum, we derived an upper bound fontegial on the modulus squared of
the wrt form factor along the cut frorh,. to infinity [3]. As discussed in the subsequent work [4],
instead of this theoretical condition derived from anaiy§i and unitarity, one can constrain the
modulus of thewrt form factor above, using experimental information from the reactere™ —
wr, reported in [17, 18, 19].

From the constraint on the modulus along the cut aligvand the known discontinuity in
the region #2, <t <t., it is possible to derive bounds on the values of the formofatt the
complext-plane and on the real axis beldw. For deriving these bounds, we have adapted the
original method of unitarity bounds, making it suitable ftbe information available for thesrt
form factor, namely its discontinuity across the cut belbe inelastic threshold. The correspond-
ing optimization problem was solved by analytic techniqaksady applied to scattering ampli-
tudes [20, 21]. We also had to take into account the fact timditse most form factors studied up to
now, thecort form factor f,,(t) is not a real analytic function,e. it does not satisfy the condition
forn(t*) = (fun(t))*. We have therefore made the proper generalization of thadiem to the
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case of analytic functions that are not of real type, a featvorth emphasizing.

2. Standard dispersivetreatment of fg(t)

We use the definition from [5], where the form factigy,(t) is defined from the matrix element

(@(Pa, A ) TH(Po)|ju(0)[0) = i€urpoe™ (Pa,A) PEAT fuon(t), (2.1)

wherej,, is the isovector part of the electromagnetic currantienotes theo polarization, and we
definedq = pa+ pp andt = ¢?. The form factorf,(t) has dimension GeV*.
Unitarity implies thatf,,(t) has a cut along the real axis for 4mZ. Using the conventions
of [5], the discontinuity off,(t) across the cut in the elastic approximation is given by
discfepr(t) = o/t Fr(t)fa(t) 6(t —4my), (2.2)
whereq(t) = \/t/4—m2, Fx(t) is the pion electromagnetic form factor, afidt) the P partial-
wave amplitude of the scattering process

1 (o) 7T (02) — @(Pa, A) (o). (2.3)

We have evaluated the discontinuity with input from two eiéint dispersive treatments of tlet
form factor. In the first treatment, reported in the oldergrg22], the pion form factoF(t) was
described by a Gounaris—Sakurai representation, whilegmecent work [5] this form factor has
been reconstructed from an Omneés representation [23]g @sinnput the pion—pion phase shift
511(t) calculated from Roy equations [24, 25]. The differencesvben the two representations of
the pion form factor are very small and have a negligible arilte on the results.

On the other hand, the calculation of the partial wdy@) in the above two references is
quite different. In Ref. [22],f1(t) was calculated by th&l/D method, with the left-hand cut
approximated byp-exchange. In this model, the phase fgft) exactly compensates the phase
of F,i(t) in the discontinuity (2.2), and as a consequence the fortorfdg(t) is a real analytic
function. However, as discussed in [5], once rescatterffegts are taken into account, the phase
of the partial wavefi(t) no longer coincides with thar P-wave phase shift as would be implied
by the naive application of Watson’s theorem [26]. More [selg, since in the region where the
decay

@(pa,A) — 1 (1) T (G2) T°(— o) (2.4)

is allowed, the rescattering between the final pions indgdhree-pion cuts is possible, the dis-
continuity (2.2) is not purely imaginary and therefore tha form factor is not a real analytic
function. Rescattering effects are properly taken int@antin the calculation of the partial wave
f1 performed in [5, 13], using Khuri—Treiman techniques [27].

The expression (2.2) is valid in the regiom#< t < t,, since above theort threshold other
intermediate states contribute in the unitarity sum. Byle&g these contributions, the form
factor was obtained from a once-subtracted dispersiotiorlgb, 22]

t [ discfun(t’)

- /
27 Jams VU —1) O (2:5)

fon(t) = fur(0) +
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The quantity| f,(0)| is known experimentally from they — 1’y decay rate. The updated value
is [28]
|fon(0)| = (2.30+0.04) GeV 1. (2.6)

The recent analysis performed in [5], based on the disper&kation (2.5), leads to results
that are inconsistent with some experimental data arayinek 0.6GeV [7, 8, 9]. As discussed
above, one questionable point of the theoretical analgsihe extension of the elastic unitarity
relation (2.2) above the (effective) threshald= (my, +my)? of multiparticle production. In the
next section we shall show how some information on the madafuthe form factorf(t) for
t >t, can be derived from independent sources.

3. Consequences of perturbative QCD, analyticity and unitarity
We begin with the polarization tensor
N (q) = /dxéqx<0lT[j“(X)j”(0)]|0> = ("o —g"'e?)N(), t=d?, 3.1)

wherej, is the isovector part of the electromagnetic current. Tist dierivativel1’(t) of the QCD
vacuum polarization amplitudé(t) satisfies the dispersion relation

o1 ImAE +ie)
I'I(t)_n/o gz A (3.2)

with the spectral function given by the unitarity relation
. 1 . :
(00’ —g"q?)ImN(t+ie) = 5 Z/dpr(Zn)45(4)(q— pr){0li*(O)IN)(r1j*(0)7[0).  (3.3)

Keeping thetrandwrrintermediate states explicitly (which should dominateisiogector spectral
function at low energies), carrying out the two-body phas#cs integrals and using the positivity
of the spectral function, we obtain the inequality

V'O = [ walt OIFt)d + [ Worlt'.0)] fon(t) 2t (3.4)
Jane, t,
where
11 A
Iy Ay
W"(t’t)_48n2(t’—t)2 (1 t'> ’
1t tN\%2 132
/ - - s = e
Worll' ) = sz (1-7) (-%) @5

and we denotetl. = (my, &= my)2. It is convenient to write (3.4) as an integral constrainttios
square of the modulus of thert form factor as

| Wordt' 0 Tan®)2d¢ <100, (3.6)
ty
where -

I(t) =N’ (t) A Wt ) F(t) 3.7)

4
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This quantity can be evaluated for spacelike values—Q? < 0 using OPE and perturbative QCD
for the correlatof1’(t), and the rich information available on the modulus of thengi@m factor.
The value ofQ? should be taken large enough such as to ensure the validityedDPE, and in
the same time lead to sufficiently strong bounds. As discliss§29], a reasonable choice satis-
fying these requirements @2 = 2Ge\2. Perturbative QCD to four loops (see [30] and references
therein) gives:

1
per(—Q%) = ey (1+ 0.3180s + 0.166a2 + 0.205a2 + 0. 5o4a4) (3.8)

whereas is the strong coupling @2 = 2Ge\2. Using as input the values(m?) = 0.320+ 0.020,
which covers most of the recent determinations from hadrordecays [28] and the coupling’s
running we obtainas = 0.357+ 0.025. This yields forf1g. the central value 0073GeV?
with an error of about 1.3%. We also checked that a highesroterm added in (3.8), taken
as 0925a2 according to [31], changeBl;e by about 1.2%. The power corrections in the
OPE, obtained from [32], bring a small contribution. Fortamce, using the standard value
(asG?)/m = 0.012GeV for the gluon condensate given in [33], we obtain for its cbation
the value (D001 GeV 2. This leads td1’(—2Ge\?) = (0.00744 0.0001) GeV~?, where the un-
certainty includes the effects of tloe uncertainty and the truncation error, added quadratically

The integral involving the pion electromagnetic form faatan be calculated using in the low-
energy region BaBar experimental data [34] and the boundB;gt)| derived in [35], along with
data obtained by BaBar up to 3GeV [34] and a smooth transitidhe 1/t decrease predicted by
QCD (for details see [35, 36]). This gives for the integrgb@aring in (3.7) the valu€0.0033+
0.0001) GeV~2, which leads to

| =1(—2GeV?) = (0.0041+ 0.0002 GeV 2. (3.9)

From the inequality (3.6) and the discontinuity (2.2) a@djin the elastic region of validity< t, ,
we shall obtain bounds on the form factor at points belpwThe mathematical technique will be
briefly described in the next section.

4. Boundson | fur(t)| below the wrrthreshold

In order to express the input conditions in a canonical faha first step is to map theplane
cut alongt > t, onto the unit diskiz| < 1 in thez= Zt) plane, by using a suitable conformal
mapping. In particular we shall use the mapping

N VA Y
z(t)_—l+m, (4.1)

such that thex0) = 0. In thez-plane the elastic region#, <t < t, becomes the segmexy <
x < 1 of the real axis, where; = Z(4mZ), and the upper (lower) edges of the tutt, become the
upper (lower) semicircles.

Further, we shall construct an outer functfz), i e. a function analytic and without zeros in
| < 1, its modulus orz] = 1 being equal ta/Wqr(f(2), —Q?)|df(z)/dZ, wheref(2) is the inverse
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of (4.1). The construction of the outer functions is expainn [37] (see also the review [15]).
Using the expression (3.5) of,.(t,—Q?), we obtain forC(z) the exact analytic expression

(1-2%(1+2) M2 (1+%-Q))*(1 - z2(t))*?

C(z) = 4.2
O ever (12— EL)T “2
Then the inequality (3.6), written in terms of the new fuanth(z) defined as
h(z) = C(2) fwr(t(2)). 4.3)
is written in the equivalent form
1 2n TN
i < )
> | dBn@)P <1, (4.4)

wheref = argz.
SinceC(z) is real analytic inz| < 1, C(x) is real forx; < x < 1, and from the definition (4.3)
it follows that we can write

disch(x) = A(x) = C(x) discf,n(f(x)), (4.5)

where the discontinuity of the form factor is obtained from2). The functionh(z) can be ex-
pressed in terms of its discontinuity as

h(z) =

where the functiom(z) is analytic in|z] < 1, as its discontinuity across the real axis vanishes:

1 1A

o s 29D, (4.6)

discg(x) =0, —l<x<1l 4.7)

Since we consider in general form factors that are not realytio, the functiong(z) is analytic,
but its values on the real axis may be complex.

We now express the available information on the form facscat aumber of constraints on the
functiong. By inserting (4.6) in (4.4) we obtain the condition
2

1 2n 1 1 A( ) 0
ZT/O do Z—m/xn —gdx+g(e?)| <1, 4.8)
while from (2.6) it follows thag(0) has the value
1 /1AKx
R = @.9)

The problem is to find the maximal allowed range|g(fz)\ at an arbitrary given poirg = Z(t) in

the interval(x;, 1), for functionsg(z) analytic in|z] < 1 and subject both to the boundary con-
dition (4.8) and the additional constraint (4.9). Using thethod of Lagrange multipliers, the
following upper and lower bounds 0f,(t)| for t € (4mZ, t, ) were obtained and presented in [3]:

‘g +2m fXT[X zdx‘_'—\/ﬁ

(fonld)] < c ,

9(0) + 2 i 5% — 2

fon(t)] > s ,

(4.10)
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wherez=Z(t) and

1/2

=1 [ [ PR D axay- 0| @.11)

We have taken into account the fact ti@{tz) calculated from (4.2) is positive forl < z < 1.
Using the value ofy(0) from (4.9) and’ from (4.11), withA(x) defined in (4.5), we have all the
ingredients to evaluate (4.10) numerically at an arbitgoint 4m2 <t <t,.

In the particular case of real analytic functions, optingber and lower bounds on the real part
of the function in the ranger. < t < t, can be derived using the methods developed in [20, 21].
In the present case the bounds are [3]:

() anXZ \/%

Refun(t) < c ,
o
Refon(t) > 90+ fX"CX(Z; ViZ (4.12)

whereP denotes the Principal Value awdx) = C(X) Im fg,(f(X)).

5. Results

In the calculation of the bounds we have employed the diguaity of the crt form factor in
the rangg4m?, t, ) from two different analyses: the recent dispersive treatmeported in [5] and
the older work [22]. For the quantitywe used the estimate given in (3.9). It turns out that theevalu
of the form factor at = 0 plays a significant role in producing stringent constsairtlthough in
principle f,7(0) can be complex, we have assumed that it only has a small pHaish wan be
neglected [5]. The upper and lower bounds given below wetairdd using as input the central
value fy,(0) = 2.30GeV 2.

We have checked that the bounds are quite stable with regpéuot variation of the input:
by varying f,7(0) inside the error quoted in (2.6), the upper bounds in theoregf interest are
changed by at most 2.5%. Also, the uncertainty of the quahtjuoted in (3.9) affects the bounds
by at most 2%. As the experimental errors are currently ratiitae 10-20% range, we refrain from
displaying these small variations in the bounds graphjicaiid only discuss the central results.

Our results are presented in Fig. 1, which shows upper andrltmounds on the modulus
squared (normalized to its value t= 0) in regiont < t_ accessible experimentally iw —
mut u—. For the input from [5], when the form factor is not a real gtialfunction, the bounds
on | f,n(t)| were calculated using (4.10). For the input from [22], whesscattering effects are
neglected and the form factor is real analytic, we used thienap bounds (4.12) on the real part,
and combined them with the knowledge of the imaginary padhiiain bounds on the modulus.
For comparison, we also show the result of the dispersivautzion performed in [5], as well as
several experimental data from [7, 8, 9]. Fig. 1 shows th#pagh the allowed ranges for the
ratio | f,r(t)/ fwr(0)|2 are rather large, some of the experimental data points atadsd, which
is the essential point brought out by our analysis.
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Figure 1: Upper and lower bounds gign(t)/ feur(0)[? from our formalism [3] with the input from [5]
shown in blue and bounds with input from [22] shown in red. cAdhown are the experimental data from
Lepton-G [7], NAGO (2009) [8], and NAG0 (2011) [9]. The greleand is the result of the dispersive calcu-
lation performed in [5].

As mentioned in the introduction, instead of the theorétioastraint (3.6) one can use as input
experimental information on the modul{&,(t)| fort > t, measured from the reacti@ie  —
wr®. This approach was considered in [4], where also an impreeesion of theN /D model
of the partial wavef,(t) given in [22] was used as input. In Fig. 2, we show the alloweldies
of |fur(t)/fwr(0)|? defined by the upper and lower bounds calculated in [4] in thelevregion
t <t,. Acomparison with Fig. 1 shows that the bounds obtained xtferimental information are
much more stringent than the "unitarity bounds" derived3ijy {ising only theoretical constraints
abovet, . The important and persistent message is that some expeéahdata around 0.6 GeV are
in conflict with these predictions, being situated well adtive upper bounds.

6. Discussion and conclusions

The present study was motivated by the discrepancies datoently between the theoretical
calculation of thewr form factor by a dispersion relation and some of the datartegan [7, 8, 9].
Our aim was to avoid the assumptions made on the discontifiithe form factor above the
thresholdt ;. , where the elastic unitarity (2.2) is no longer valid. Testehd we have resorted to the
formalism of unitarity bounds. The central point of the fa@imam is the derivation of an integral
condition on the modulus squared of the form factor frianto infinity, which can be calculated
using OPE and perturbative QCD in the Euclidean region fasitalsle correlator, together with
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Figure 2: Cyan band: allowed values f,n(t)/ for(0)|? in the regiont < t, defined by the upper and
lower bounds derived in Ref. [4], compared with experimbdéda from Lepton-G [7], NA60 (2009) [8],
and NAG60 (20 11) [9].

unitarity and positivity of the spectral function. In theepent case it was convenient to consider
the tensor (3.1) of two isovector currents.

In this work we have considered a modified version of the stehformalism, suitable for
including the information available on theert form factor, namely the discontinuity (2.2) known
in the elastic region. This is a generalization of the foismalof unitarity bounds, considered for
the first time in our work [3]. The framework is not specific teetwr form factor and could be
easily adapted to the analysis of other form factors. Thevatéon uses the maximization of the
modulus of a difference of complex numbers in the last stépchvimplies that strictly speaking
the bounds (4.10) are not optimal.

The numerical results show that several experimental datand 06 GeV are situated above
the upper bounds derived in [3, 4]. Having in view the modelependent treatment of the re-
gion above the inelastic threshdld adopted in these analyses, the disagreement signals lgossib
problems with the experimental data.
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