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In this talk we review our recent work on the electromagneticωπ form factor in a model-

independent framework known as the method of unitarity bounds. Our study was motivated by

the discrepancies noted recently between the theoretical calculations of the form factor based on

dispersion relations and certain experimental data measured from the decayω → π0γ∗. We have

applied a modified dispersive formalism, which uses as inputthe discontinuity of theωπ form

factor calculated by unitarity below theωπ threshold and an integral constraint on the square of

its modulus above this threshold. The latter constraint wasobtained by exploiting unitarity and

the positivity of the spectral function of a QCD correlator,computed on the spacelike axis by

operator product expansion and perturbative QCD. From these conditions we derived upper and

lower bounds on the modulus of theωπ form factor in the region below theωπ threshold. The

results confirm the existence of a disagreement between dispersion theory and experimental data

on theωπ form factor around 0.6 GeV.
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1. Introduction

There is renewed interest in the transition form factors of light mesons [1], partly because the
pseudoscalar (π0,η ,η ′) pole terms constitute some of the most important contributions to hadronic
light-by-light scattering, which enters the standard model prediction for the muon’s anomalous
magnetic moment (see [2] and references therein). Some of them can be measured in decays such
asω → π0ℓ+ℓ− or φ → ηℓ+ℓ−.

The present contribution is based on the work reported in therecent publications [3, 4]. The
motivation of these studies was the fact that recent dispersive treatments [5, 6] of theωπ elec-
tromagnetic form factorfωπ(t) are in disagreement with experimental data in the region around
0.6GeV [7, 8, 9], which show strong deviations from even approximate vector-meson-dominance
behavior [10] and descriptions based on effective field theory [11, 12]. The dispersive method
uses unitarity, which allows one to express the discontinuity of the form factor in terms of the P
partial wave of the processππ → ωπ [13, 6] and the pion electromagnetic form factor, quanti-
ties determined with precision. Strictly speaking, this relation is valid only in the elastic region,
4m2

π ≤ t < 16m2
π . Phenomenologically, it is known that the elastic regime approximately extends

up toωπ threshold,t+ = (mω + mπ)2, above which the inelasticity in the P-wave pion–pion scat-
tering is assumed to be dominated by theωπ intermediate state [13]. However, due to the lack
of information on the discontinuity in the inelastic region, in previous studies it was assumed that
elastic unitarity is valid also at higher energies in the evaluation of the dispersion integral. This
assumption can affect the precision of the theoretical treatment.

In order to avoid the assumption above we have exploited alternative information on the form
factor abovet+. In Ref. [3] we have used a method proposed originally by Okubo [14] (before
the advent of QCD), which leads to bounds on form factors by exploiting the analyticity and the
positivity properties of the spectral function of a suitable current–current correlator. The method
has come to be known asmethod of unitarity bounds, and has been resuscitated in the QCD era
(for a review and more references see [15, 16]). In the present case we use a dispersion relation for
the polarization function of two isovector vector currents, calculated by operator product expansion
(OPE) in the Euclidean region, and exploit unitarity for thespectral function. Includingππ andωπ
states in the unitarity sum, we derived an upper bound for an integral on the modulus squared of
theωπ form factor along the cut fromt+ to infinity [3]. As discussed in the subsequent work [4],
instead of this theoretical condition derived from analyticity and unitarity, one can constrain the
modulus of theωπ form factor abovet+ using experimental information from the reactione+e− →
ωπ0, reported in [17, 18, 19].

From the constraint on the modulus along the cut abovet+ and the known discontinuity in
the region 4m2

π ≤ t < t+, it is possible to derive bounds on the values of the form factor in the
complext-plane and on the real axis belowt+. For deriving these bounds, we have adapted the
original method of unitarity bounds, making it suitable forthe information available for theωπ
form factor, namely its discontinuity across the cut below the inelastic threshold. The correspond-
ing optimization problem was solved by analytic techniquesalready applied to scattering ampli-
tudes [20, 21]. We also had to take into account the fact that,unlike most form factors studied up to
now, theωπ form factor fωπ(t) is not a real analytic function,i.e. it does not satisfy the condition
fωπ(t∗) = ( fωπ(t))∗. We have therefore made the proper generalization of the formalism to the
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case of analytic functions that are not of real type, a feature worth emphasizing.

2. Standard dispersive treatment of fωπ(t)

We use the definition from [5], where the form factorfωπ(t) is defined from the matrix element

〈ω(pa,λ )π(pb)| jµ(0)|0〉 = iεµτρσ ετ∗(pa,λ )pρ
bqσ fωπ(t), (2.1)

where jµ is the isovector part of the electromagnetic current,λ denotes theω polarization, and we
definedq = pa + pb andt = q2. The form factorfωπ(t) has dimension GeV−1.

Unitarity implies thatfωπ(t) has a cut along the real axis fort ≥ 4m2
π . Using the conventions

of [5], the discontinuity offωπ(t) across the cut in the elastic approximation is given by

disc fωπ(t) =
iq3

ππ (t)

6π
√

t
F∗

π (t) f1(t)θ
(

t −4m2
π
)

, (2.2)

whereqππ(t) =
√

t/4−m2
π , Fπ(t) is the pion electromagnetic form factor, andf1(t) the P partial-

wave amplitude of the scattering process

π+(q1)π−(q2) → ω(pa,λ )π0(pb). (2.3)

We have evaluated the discontinuity with input from two different dispersive treatments of theωπ
form factor. In the first treatment, reported in the older paper [22], the pion form factorFπ(t) was
described by a Gounaris–Sakurai representation, while in the recent work [5] this form factor has
been reconstructed from an Omnès representation [23], using as input the pion–pion phase shift
δ 1

1 (t) calculated from Roy equations [24, 25]. The differences between the two representations of
the pion form factor are very small and have a negligible influence on the results.

On the other hand, the calculation of the partial wavef1(t) in the above two references is
quite different. In Ref. [22],f1(t) was calculated by theN/D method, with the left-hand cut
approximated byρ-exchange. In this model, the phase off1(t) exactly compensates the phase
of F∗

π (t) in the discontinuity (2.2), and as a consequence the form factor fωπ(t) is a real analytic
function. However, as discussed in [5], once rescattering effects are taken into account, the phase
of the partial wavef1(t) no longer coincides with theππ P-wave phase shift as would be implied
by the naive application of Watson’s theorem [26]. More precisely, since in the region where the
decay

ω(pa,λ ) → π+(q1)π−(q2)π0(−pb) (2.4)

is allowed, the rescattering between the final pions including three-pion cuts is possible, the dis-
continuity (2.2) is not purely imaginary and therefore theωπ form factor is not a real analytic
function. Rescattering effects are properly taken into account in the calculation of the partial wave
f1 performed in [5, 13], using Khuri–Treiman techniques [27].

The expression (2.2) is valid in the region 4m2
π ≤ t < t+, since above theωπ threshold other

intermediate states contribute in the unitarity sum. By neglecting these contributions, the form
factor was obtained from a once-subtracted dispersion relation [5, 22]

fωπ(t) = fωπ(0)+
t

2π i

∫ ∞

4m2
π

disc fωπ(t ′)
t ′(t ′− t)

dt′. (2.5)
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The quantity| fωπ(0)| is known experimentally from theω → π0γ decay rate. The updated value
is [28]

| fωπ(0)| = (2.30±0.04)GeV−1. (2.6)

The recent analysis performed in [5], based on the dispersion relation (2.5), leads to results
that are inconsistent with some experimental data around

√
t ≈ 0.6GeV [7, 8, 9]. As discussed

above, one questionable point of the theoretical analysis is the extension of the elastic unitarity
relation (2.2) above the (effective) thresholdt+ = (mω + mπ)2 of multiparticle production. In the
next section we shall show how some information on the modulus of the form factorfωπ(t) for
t > t+ can be derived from independent sources.

3. Consequences of perturbative QCD, analyticity and unitarity

We begin with the polarization tensor

Πµν(q) =
∫

dxeiqx〈0|T[ jµ(x) jν (0)]|0〉 =
(

qµqν −gµνq2)Π(t), t = q2, (3.1)

where jµ is the isovector part of the electromagnetic current. The first derivativeΠ ′(t) of the QCD
vacuum polarization amplitudeΠ(t) satisfies the dispersion relation

Π ′(t) =
1
π

∫ ∞

0

ImΠ(t ′ + iε)

(t ′− t)2 dt′, (3.2)

with the spectral function given by the unitarity relation

(

qµqν −gµνq2)ImΠ(t + iε) =
1
2 ∑

Γ

∫

dρΓ(2π)4δ (4)(q− pΓ)〈0| jµ (0)|Γ〉〈Γ| jν (0)†|0〉. (3.3)

Keeping theππ andωπ intermediate states explicitly (which should dominate theisovector spectral
function at low energies), carrying out the two-body phase space integrals and using the positivity
of the spectral function, we obtain the inequality

Π ′(t) ≥
∫ ∞

4m2
π

wπ(t ′, t)|Fπ(t ′)|2dt′ +
∫ ∞

t+
wωπ(t ′, t)| fωπ(t ′)|2dt′, (3.4)

where

wπ(t ′, t) =
1

48π2

1
(t ′− t)2

(

1− 4m2
π

t ′

)3/2

,

wωπ(t ′, t) =
1

192π2

t ′

(t ′− t)2

(

1− t−
t ′

)3/2(

1− t+
t ′

)3/2
, (3.5)

and we denotedt± = (mω ±mπ)2. It is convenient to write (3.4) as an integral constraint onthe
square of the modulus of theωπ form factor as

∫ ∞

t+
wωπ(t ′, t)| fωπ(t ′)|2dt′ ≤ I(t), (3.6)

where
I(t) = Π ′(t)−

∫ ∞

4m2
π

wπ(t ′, t)|Fπ(t ′)|2dt′. (3.7)
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This quantity can be evaluated for spacelike valuest ≡−Q2 < 0 using OPE and perturbative QCD
for the correlatorΠ ′(t), and the rich information available on the modulus of the pion form factor.
The value ofQ2 should be taken large enough such as to ensure the validity ofthe OPE, and in
the same time lead to sufficiently strong bounds. As discussed in [29], a reasonable choice satis-
fying these requirements isQ2 = 2GeV2. Perturbative QCD to four loops (see [30] and references
therein) gives:

Π ′
pert(−Q2) =

1
8π2Q2

(

1+0.318αs+0.166α2
s +0.205α3

s +0.504α4
s

)

, (3.8)

whereαs is the strong coupling atQ2 = 2GeV2. Using as input the valueαs(m2
τ) = 0.320±0.020,

which covers most of the recent determinations from hadronic τ decays [28] and the coupling’s
running we obtainαs = 0.357± 0.025. This yields forΠ ′

pert the central value 0.0073GeV−2

with an error of about 1.3%. We also checked that a higher-order term added in (3.8), taken
as 0.925α5

s according to [31], changesΠ ′
pert by about 1.2%. The power corrections in the

OPE, obtained from [32], bring a small contribution. For instance, using the standard value
〈αsG2〉/π = 0.012GeV4 for the gluon condensate given in [33], we obtain for its contribution
the value 0.0001GeV−2. This leads toΠ ′(−2GeV2) = (0.0074±0.0001)GeV−2, where the un-
certainty includes the effects of theαs uncertainty and the truncation error, added quadratically.

The integral involving the pion electromagnetic form factor can be calculated using in the low-
energy region BaBar experimental data [34] and the bounds on|Fπ(t)| derived in [35], along with
data obtained by BaBar up to 3GeV [34] and a smooth transitionto the 1/t decrease predicted by
QCD (for details see [35, 36]). This gives for the integral appearing in (3.7) the value(0.0033±
0.0001)GeV−2, which leads to

I ≡ I(−2GeV2) = (0.0041±0.0002)GeV−2. (3.9)

From the inequality (3.6) and the discontinuity (2.2) adopted in the elastic region of validityt < t+,
we shall obtain bounds on the form factor at points belowt+. The mathematical technique will be
briefly described in the next section.

4. Bounds on | fωπ(t)| below the ωπ threshold

In order to express the input conditions in a canonical form,the first step is to map thet plane
cut alongt ≥ t+ onto the unit disk|z| < 1 in the z≡ z̃(t) plane, by using a suitable conformal
mapping. In particular we shall use the mapping

z̃(t) =
1−

√

1− t/t+
1+

√

1− t/t+
, (4.1)

such that the ˜z(0) = 0. In thez-plane the elastic region 4m2
π ≤ t < t+ becomes the segmentxπ ≤

x < 1 of the real axis, wherexπ = z̃(4m2
π), and the upper (lower) edges of the cutt > t+ become the

upper (lower) semicircles.
Further, we shall construct an outer functionC(z), i.e. a function analytic and without zeros in

|z| < 1, its modulus on|z|= 1 being equal to
√

wωπ(t̃(z),−Q2)|dt̃(z)/dz|, wheret̃(z) is the inverse

5
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of (4.1). The construction of the outer functions is explained in [37] (see also the review [15]).
Using the expression (3.5) ofwωπ(t,−Q2), we obtain forC(z) the exact analytic expression

C(z) =
(1−z)2(1+z)−1/2

16
√

6π
(1+ z̃(−Q2))2(1−zz̃(t−))3/2

(1−zz̃(−Q2))2(1+ z̃(t−))3/2
. (4.2)

Then the inequality (3.6), written in terms of the new function h(z) defined as

h(z) = C(z) fωπ(t̃(z)). (4.3)

is written in the equivalent form

1
2π

∫ 2π

0
dθ |h(eiθ )|2 ≤ I , (4.4)

whereθ = argz.
SinceC(z) is real analytic in|z| < 1,C(x) is real forxπ ≤ x < 1, and from the definition (4.3)

it follows that we can write

disch(x) ≡ ∆(x) = C(x)disc fωπ(t̃(x)), (4.5)

where the discontinuity of the form factor is obtained from (2.2). The functionh(z) can be ex-
pressed in terms of its discontinuity as

h(z) =
1

2π i

∫ 1

xπ

∆(x)
x−z

dx+g(z), (4.6)

where the functiong(z) is analytic in|z| < 1, as its discontinuity across the real axis vanishes:

discg(x) = 0, −1 < x < 1. (4.7)

Since we consider in general form factors that are not real analytic, the functiong(z) is analytic,
but its values on the real axis may be complex.

We now express the available information on the form factor as a number of constraints on the
functiong. By inserting (4.6) in (4.4) we obtain the condition

1
2π

∫ 2π

0
dθ

∣

∣

∣

∣

1
2π i

∫ 1

xπ

∆(x)
x−eiθ dx+g(eiθ )

∣

∣

∣

∣

2

≤ I , (4.8)

while from (2.6) it follows thatg(0) has the value

g(0) = fωπ(0)C(0)− 1
2π i

∫ 1

xπ

∆(x)
x

. (4.9)

The problem is to find the maximal allowed range of|g(z)| at an arbitrary given pointz= z̃(t) in
the interval(xπ ,1), for functionsg(z) analytic in |z| < 1 and subject both to the boundary con-
dition (4.8) and the additional constraint (4.9). Using themethod of Lagrange multipliers, the
following upper and lower bounds on| fωπ(t)| for t ∈ (4m2

π , t+) were obtained and presented in [3]:

| fωπ(t)| ≤

∣

∣

∣
g(0)+ 1

2π i

∫ 1
xπ

∆(x)
x−zdx

∣

∣

∣
+ zI′√

1−z2

C(z)
,

| fωπ(t)| ≥

∣

∣

∣
g(0)+ 1

2π i

∫ 1
xπ

∆(x)
x−zdx

∣

∣

∣
− zI′√

1−z2

C(z)
, (4.10)
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wherez= z̃(t) and

I ′ =

[

I − 1
4π2

∫ 1

xπ

∫ 1

xπ

∆(x)∆∗(y)
1−xy

dxdy−|g(0)|2
]1/2

. (4.11)

We have taken into account the fact thatC(z) calculated from (4.2) is positive for−1 < z < 1.
Using the value ofg(0) from (4.9) andI ′ from (4.11), with∆(x) defined in (4.5), we have all the
ingredients to evaluate (4.10) numerically at an arbitrarypoint 4m2

π < t < t+.

In the particular case of real analytic functions, optimal upper and lower bounds on the real part
of the function in the range 4m2

π < t < t+ can be derived using the methods developed in [20, 21].
In the present case the bounds are [3]:

Re fωπ(t) ≤
g(0)+ P

π
∫ 1

xπ
σ(x)
x−z dx+ zI′√

1−z2

C(z)
,

Re fωπ(t) ≥
g(0)+ P

π
∫ 1

xπ
σ(x)
x−z dx− zI′√

1−z2

C(z)
, (4.12)

whereP denotes the Principal Value andσ(x) = C(x) Im fωπ(t̃(x)).

5. Results

In the calculation of the bounds we have employed the discontinuity of theωπ form factor in
the range(4m2

π , t+) from two different analyses: the recent dispersive treatment reported in [5] and
the older work [22]. For the quantityI we used the estimate given in (3.9). It turns out that the value
of the form factor att = 0 plays a significant role in producing stringent constraints. Although in
principle fωπ(0) can be complex, we have assumed that it only has a small phase which can be
neglected [5]. The upper and lower bounds given below were obtained using as input the central
value fωπ(0) = 2.30GeV−1.

We have checked that the bounds are quite stable with respectto the variation of the input:
by varying fωπ(0) inside the error quoted in (2.6), the upper bounds in the region of interest are
changed by at most 2.5%. Also, the uncertainty of the quantity I quoted in (3.9) affects the bounds
by at most 2%. As the experimental errors are currently rather in the 10–20% range, we refrain from
displaying these small variations in the bounds graphically and only discuss the central results.

Our results are presented in Fig. 1, which shows upper and lower bounds on the modulus
squared (normalized to its value att = 0) in region t < t− accessible experimentally inω →
π0µ+µ−. For the input from [5], when the form factor is not a real analytic function, the bounds
on | fωπ(t)| were calculated using (4.10). For the input from [22], whererescattering effects are
neglected and the form factor is real analytic, we used the optimal bounds (4.12) on the real part,
and combined them with the knowledge of the imaginary part toobtain bounds on the modulus.
For comparison, we also show the result of the dispersive calculation performed in [5], as well as
several experimental data from [7, 8, 9]. Fig. 1 shows that, although the allowed ranges for the
ratio | fωπ(t)/ fωπ(0)|2 are rather large, some of the experimental data points are excluded, which
is the essential point brought out by our analysis.

7
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Lepton-G
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NA60 (2011)

√
t [GeV]

|f
ω
π
(t

)/
f ω

π
(0

)|2

Figure 1: Upper and lower bounds on| fωπ(t)/ fωπ (0)|2 from our formalism [3] with the input from [5]
shown in blue and bounds with input from [22] shown in red. Also shown are the experimental data from
Lepton-G [7], NA60 (2009) [8], and NA60 (2011) [9]. The greenband is the result of the dispersive calcu-
lation performed in [5].

As mentioned in the introduction, instead of the theoretical constraint (3.6) one can use as input
experimental information on the modulus| fωπ(t)| for t > t+ measured from the reactione+e− →
ωπ0. This approach was considered in [4], where also an improvedversion of theN/D model
of the partial wavef1(t) given in [22] was used as input. In Fig. 2, we show the allowed values
of | fωπ(t)/ fωπ(0)|2 defined by the upper and lower bounds calculated in [4] in the whole region
t < t+. A comparison with Fig. 1 shows that the bounds obtained withexperimental information are
much more stringent than the "unitarity bounds" derived in [3], using only theoretical constraints
abovet+. The important and persistent message is that some experimental data around 0.6 GeV are
in conflict with these predictions, being situated well above the upper bounds.

6. Discussion and conclusions

The present study was motivated by the discrepancies noticed recently between the theoretical
calculation of theωπ form factor by a dispersion relation and some of the data reported in [7, 8, 9].
Our aim was to avoid the assumptions made on the discontinuity of the form factor above the
thresholdt+, where the elastic unitarity (2.2) is no longer valid. To this end we have resorted to the
formalism of unitarity bounds. The central point of the formalism is the derivation of an integral
condition on the modulus squared of the form factor fromt+ to infinity, which can be calculated
using OPE and perturbative QCD in the Euclidean region for a suitable correlator, together with

8



P
o
S
(
C
D
1
5
)
0
4
4

Constraints on theωπ form factor from analyticity and unitarity B. Ananthanarayan

0.3 0.4 0.5 0.6

t
1/2 

(GeV)

1

10

100

|f ω
π(t

)/
 f ω

π(0
)|

2

Lepton-G 
NA60 (2009)
NA60 (2011)

Figure 2: Cyan band: allowed values of| fωπ(t)/ fωπ (0)|2 in the regiont < t+ defined by the upper and
lower bounds derived in Ref. [4], compared with experimental data from Lepton-G [7], NA60 (2009) [8],
and NA60 (20 11) [9].

unitarity and positivity of the spectral function. In the present case it was convenient to consider
the tensor (3.1) of two isovector currents.

In this work we have considered a modified version of the standard formalism, suitable for
including the information available on theωπ form factor, namely the discontinuity (2.2) known
in the elastic region. This is a generalization of the formalism of unitarity bounds, considered for
the first time in our work [3]. The framework is not specific to the ωπ form factor and could be
easily adapted to the analysis of other form factors. The derivation uses the maximization of the
modulus of a difference of complex numbers in the last step, which implies that strictly speaking
the bounds (4.10) are not optimal.

The numerical results show that several experimental data around 0.6 GeV are situated above
the upper bounds derived in [3, 4]. Having in view the model-independent treatment of the re-
gion above the inelastic thresholdt+ adopted in these analyses, the disagreement signals possible
problems with the experimental data.
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