PROCEEDINGS

OF SCIENCE

ap — fo mixing in the Khuri-Treiman equations for
n — 3m

M. Albaladejo
Instituto de Fisica Corpuscular (IFIC), Centro Mixto CSl@riversidad de Valencia, Spain
E-mail: M guel . Al bal adej o@fic.uv. es

B. Moussallam*
Groupe de Physique Théorique, IPN (UMR8608), UniversitésFaud 11, Orsay, France
E-mail: noussal | @ pno. i n2p3.fr

A reliable determination of the isospin breaking doublerguaass ratio from precise experi-
mental data om — 37T decays should be based on the chiral expansion of the achgkupple-
mented with a Khuri-Treiman type dispersive treatment effthal-state interactions. We discuss
an extension of this formalism which allows to estimate tfieots of theag(980) and fy(980)
resonances and their mixing on the— 31t amplitudes. Matrix generalisations of the equations
describing elastiatrt rescattering witH = 0, 2 are introduced which accomodate batit/ KK
and r]n/KK_ coupled-channel rescattering. Isospin violation indubgdhe physicaK* — K°
mass difference and by direot— d mass difference effects are both accounted for in the dis-
persive integrals. Numerical solutions are constructetthvhlustrate how the large resonance
effects at 1 GeV propagate down to low energies. They renmaailsn the physical region of
the decay, due to the matching constraints with the NLO thimgplitude, but they are not negli-
gible and go in the sense of further improving the agreemdhtexperiment for the Dalitz plot
parameters.

The 8th International Workshop on Chiral Dynamics, CD2015 *
29 June 2015 - 03 July 2015
Pisa,ltaly

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre&ammons
Attribution-NonCommercial-NoDerivatives 4.0 Internatii.icense (CC BY-NC-ND 4.0). http://pos.sissa.it/



ap — fo mixing in the Khuri-Treiman B. Moussallam

1. Introduction

Precise measurements of Dalitz plot distributions of thes " r° (see [1]) andn —
P decays (see [2]) have been performed recently (see also the talksigv@nnella and S.
Fang at this conference). These measurements provide precioudsriaigithe workings of the
chiral expansion beyond the next-to-leading order (NLO) which issssng in order to arrive at a
reliable and precise determination of the isospin breaking double quarkratigss

o Ty

—m, Myd = (My+my)/2. (1.1)

As an illustration of the importance of NNLO effects, consider the slopenpetera in then —
3r° Dalitz plot. The NLO prediction [3] depends on no coupling constant (@xeg) but fails to
agree with experiment,

aNO = 4+1.41.10°2

a®P= —(3.15+0.15)-10°2

The calculation of they — 3 amplitudes at NNLO has been performed [4] but, in this case,
predictivity is limited by the absence of model independent determination oéléxeant coupling
constant<].

Part of theO(p®) (and higher order) chiral effects can be attributed to final-state intenactio
(FSI). Indeed, the chiral NLO amplitude accounts for the F€)(@?) only. The attractive idea was
proposed long ago to treat the FSI part exactly through dispersive deetiuile using the chiral
expansion in unphysical sub-threshold regions [5—8] and then matdtvéhepresentations. The
formalism proposed by Khuri and Treiman [9] for treating tyevave FSI in three-body decays
was extended tB®-wave rescattering and applied to the— 3rramplitude in refs. [7, 8]. Here, we
investigate a further extension of the KT equations, which goes beyoralabigc approximation,
and thereby includes the influence of @we— fo resonant mixing effects. In this regard, the for-
malism accounts for isospin breaking induced by khe— K® mass difference via unitarity, first
considered in ref. [10], as well as the direct quark mass matrix effects.

(1.2)

2. Khuri-Treiman formalism with chiral NLO matching: elasti c case

Khuri and Treiman [9] have shown that the final-state interaction problemthfee-body
decays, can be recast as a problem of solving sets of integral equisitvofving functions of one
variable. Its application to the — 3rramplitudes [7, 8] involves three functiond, (w), | =1,2,3
such that the charged decay amplitude can be expressed as follows,

1 g (g — )

=TT (gt u) = —g M(St,u), & =
Q* 3V3FZm2

(2.1)

and
M(s,t, 1) = Mo(s) — gMz(S) T (5— UMy (t) + Ma(t) + (t &5 U) . 2.2)

The Mandelstam variables are given &y (pr+ + P )2 t = (P + Pro)2 U= (Prr + Pro)?.
Under the assumption of elastic unitarity, the equations can be expressechgnaiethe Omnes
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functions,
©® ds

where ¢, is the rirt elastic phase shift with isospinandJ = 0 or 1. The KT equations, in the
four-parameter version proposed in ref. [8], have the following form

=

=N

2
I

Qo(W) [0 +WPBo +W? (yo+ lo(w)) |
My (W) = Qi (w) w[B1 + 1 (w)] (2.4)
Mz(W) = Qz(W)WZ [I}(w)]

where

Lo M/ ()]
|.(w)_—nAn%d§W§'_W>M.<§) 2.5)

(with n=2 whenl = 0,2 andn = 1 whenl = 1). The functionsVi;, finally, are the left-cut parts of
thenm— (mm), partial-wave amplitudes; with J = 0,1,
TS(5) = %k (Mo(S) + Mo(s))

TL(s) = 7-K(S) (Ma(s) +My(s)) (2.6)
T2 () = — = (Ma(S) + Ma(9))

with k2(s) = (1 —4m2/s)(s— (M, 4+ my)?)(s— (M, —my)?). The functiongV; can be expressed
in terms of theM, functions via the representation (2.1) and performing 0,1 partial-wave
projections, such that the equations (2.4) form a linear, self-consststdm. It is easy to verify
that these equations ensure that the partial-wave amplitudes satisfy thetadastic unitarity
equations,

Im[.7; (s)] = exp(—i& (s)) sin(&(s)) 75 (), I=0,1 (2.7)

Strictly speaking, this form is valid in the unphysical situation where< 3m;. The analytical
continuation of eq. (2.7) to the physical case is performed by replacinigndginary part by the
discontinuity across the unitarity cut (divided by.Z-urthermore, in that case, the complex cut of
the functionaVl; overlaps with the unitarity cut and these functions diverge at the pstweshold
s= (m, —mg)2. The integrald) can also be defined (and are finite) by analytic continuation. All
these subtle points are explained in detail in ref. [7].

Clearly, the representation (2.1) is not the most general one for an aneplitoich depends
on two independent variables and must therefore hold only in a restraegeshrof the Mandelstam
variables. It is also easy to check that this representation implies

Im[.73,5(s)] =0 (2.8)

which cannot be exactly correct but represents an acceptablexapptimn when the correspond-
ing J > 2 rirr phase-shifts are small, that is, in the reg&rd 1 Ge\?.
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2.1 Matching conditions

The parameters, Bo, Yo, B1 originate from the presence of subtractions in the dispersive
representations of the functiold. These are necessary in order to reduce the dependence on
the integration regios’ > 1 Ge\?. We consider here a version which leads to four polynomial
parameters. It is particularly convenient, since, in this case, all the ptwe@an be fixed from
matching with the NLO chiral amplitude. The matching conditions are obtainedtfiersimple
requirement that the difference between the dispersive and the amipditiede of ordemp” should
be of chiral ordep™*1, i.e., in our case,

MKT (s, t,u) — MC"PT(s t,u) = O(p®) . (2.9)

This relation is satisfied automatically for the imaginary part of the differemtgch implies

that the real part can be expanded as a polynomial as a function ofriableas, t, u. Equat-

ing this polynomial to zero gives four independent equations. Expigedka chiral amplitude
MCPT(s tu) in the same form as eq. (2.1) in terms of three functidhs(see [8]) these four
matching equations can be written as follows,

1o, o .~ - 4o
aoz9(§Mg—|2)sg+3(M§—M1)sO+Mo+§Mz

1, - - 5
Bo=—9(5M5 —12) so+ Mg+ 3My — ZMj — Qgato

IR (2.10)
B = M’1+§Mé’—ll—lz

1_// 2_// i i 1 i /
VOZ iMO—i—éMz—IO—éIZ—éQOaO—QOBO

where all functions and their derivatives are to be takemat0. Note that the integrals carry a
linear dependence on the four polynomial parameters.

3. KT equations for n — 3mrwith KK inelastic channels

3.1 Difficulties of the general extension

The assumption of elastic unitarity seems well justifiedrfor> 371 since thertt energys <
(my — my;)? and elastic unitarity is known to hold to a good approximation in the regier: 1
GeV. However, the KT equations involve integrals over an infinite enesigge. In the Omnés
integrals, for instance, there is an arbitrariness as to the choice of the fhae used above thak
threshold. The subtractions and the matching equations ensure that tsidispmplitude in the
low energy region should not depend too much on the choice of phase &ligeV. Nevertheless,
having a small number of subtractions, one expects that an improved treafitiemnl GeV region,
should result in better precision at low energy. At 1 GeV, the two resmsag(980) and f(980)
are present and a sharp onset of inelastic—s KK scattering in thé&wave is observed.

Extending the unitarity relations to include the thi€k channels leads one to consider the
transition amplitudes frorK TK—, K°%K®, K*K° to rrtrr, °n®, " and tonm®, nmt. Each
of these physical amplitudes can be expressed in terms of functions eadable, analogous to
eg. (2.1). Unfortunately, a separation of each amplitude into an isospirtingkand an isospin
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conserving component is not possible at this level because the kinenuaticsiaint ors+t + u

is different forK TK~ andK°K® amplitudes. This separation can be made only after performing
the partial wave projections. This feature complicates the derivation ohergleself-consistent
set of KT equations including th&K channels. In the following, we will show that a simple
approximation can be made which should provide a sensible order of magfatuthe influence

of these channels on the— 3T amplitude.

3.2 Coupled-channel unitarity relations

Let us now focus on thé = 0 partial waves. We will have to consider the following isospin
conserving amplitudes with=0, 1
TO Tt — Tt Tt = KK: TO = Nit—nmni— KK: (3.1)
i — KK KK — KK |—07 nm— KK KK — KK -
while for | = 2, coupling toK K cannot occur and we will continue to use the elastic approximation
in that cask. We can classify the isospin violating amplitudes into two classeb=a) — | = 1
transitions and b) = 1 — | = 2 transitions,

< < < KTKO — 0

[ (mmo—nm (KK)o—nm [ nmt =P
T(01> - ((TUT)O — (KK)]_ (KK)O — (KK)]_) ’ T(lz) ( ) (32)

We can then write the unitarity relations for these two sets of isospin violating anhgditwhich
now includeKK inelasticity. ForT ®Y, and to first order in isospin breaking, they read

(017 _ T+ 50700 | 7O 5171 _ 70+ [0 O )@
Im [TOV] = TO 07OV L 7OV T L T (OMK>T1 (3.3)
with
0/er [ Omn(s) O 1o [Onn(s) O
z<s>—< " Ms)), z<s>—< " GKK(S)> 34)
and
al®) = (L (Mo 0)2/5) (1 (Mo~ m/8)0(s— (Mo +10)7) . (35)

The last term in eq. (3.3) accounts for isospin violation induced byKthe- K mass difference

via the function 1
Aok (s) = > (Ok+k-(S) — Okogo(S)) - (3.6)

The unitarity relation for th& (12 amplitudes, now, reads

Im[T12) = T 51712 | TG T(2) (3.7)

Linelasticity will also be ignored fod = 1 scattering. Recall that we are mainly interested here in accounting for
the effects of thé = 0, 1 scalar resonances.
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3.3 Coupled-channel KT equations

The next step is to separate each isospin violating partial-wave amplituddy islaic analytic
function with two cuts into two functions, one having a right-hand cut andhawing a left-hand
cut. In matrix form,

6¢ N e [ Ma+M,
T(Ol) _ \f L M M T(12) __cL 2 v . )
321 (Mo+Mo). 161 \ G1o+ Gyo (3.8)

It is now easy to derive a matrix generalisation of the KT equations (2.4lvimgpMy andM.. For
the matrixMg, one has

Mo(w) = Qo(w) [Po(w) + W (Ta(w) + Ts(W))] 'Qa(w) (3.9)

whereQ, are Muskhelishvili-Omnes (MO)X2 matrices, which must be computed numerically
from thel = 0,1 T-matrices andPy is a matrix of polynomials involving 12 parameters. The
matrices of integrals, finally, read

. o d . .
Ia(w) =~ [ rats = (M9 M) Q5(¢) + 5 (<) M) m [‘nﬁs(f;]zo)

~ o032 [ dSA0K(S) A~ 1 . 00 _
lo(w) = = / . @PE w2 T <0 1) THE ) @1

they correspond to the two different types of contributions in the unitariios for T°Y. Note
that in thel g integrals isospin violation is induced by the physikal — K mass difference. As
in the one channel case, the representation (3.9) ensure that the unétkatityns (3.3) forT OV
are satisfied. It also ensures that each component in the nMgrigatisfies a twice-subtracted
dispersion relation associated with its right-hand cut,

Mol () =t + o+ 0 [ 2t ()] 312

(8 —w)
Verifying that eq. (3.12) is satisfied is a good check of the numerical impl&tien of the KT
representation (3.9).
The analogous equations derived from THé? amplitudes read

Me(w) ) _ W+ W2(yo + [5()
<G12(W) ) = Qo(W)Q1(W) (a§+w32*<+w2(y§+ﬂ2<(w)> (3.13)
with i A
lo(w))) 1 /° ds L Ma(s)
<ﬂ5<w>> = @ 02 <é12(§)> | (3.14)

Note that both thép(980) and theag(980) resonances are present in the representation (3.9) of the
My functions via the two Omnés-Muskhelishvili matrices (see fig. 2).
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3.4 Matching equations

For thenmm— mrr amplitudes we can use, as before, the four matching equations associated
with the NLO chiral amplitudes. The set of matching equations (2.10) is eagilgrgksed to
the coupled-channel situation by using the corresponding KT repegsers forMp, M1, Ma. In
contrast, for the amplitudes which involve thk& channels, we do not have a complete set of
self-consistent KT equations which would enable us to determine the lefthoctions in terms
of the right-cut ones. Thus, we cannot use the NLO amplitudes to perf@m#iching. The
set of equations is sufficient, however, for matching to leading ordealdninplitudes. Indeed, at
LO the chiral amplitudes have no left-hand cut. Accordingly, we can makegpheoximation to
set the left-cut function{ﬂo]ij equal to zero whenj = 12 21,22 andGi, = 0. The polynomial
parameters may then be fixed such as to reprodud®(tp® expressions

Mo, VEEs—amE) o V3(Es- A

[ o]zl—m7 [ 0hz_—m (3.15)
3v/6(3s— 4ng)

[Mo]22=0, G2 = 16(mg —m2)

The low energy behaviour of the these isospin violat'(riﬁamplitudes, resulting from this match-
ing procedure, is illustrated on fig. 1.

3 \ \ ‘ 4 : ‘ : ‘
[7{'71’ — fgk]m [KT] e [[gk*) ]gk}m [KT] e
21 o = Koy [0)] - 3| [KK — KRy [0)] ——
[]X:K — T]Tl'}m [](T] _ [KK*)W?TMQ []X’T] _
1, (KK = nrlo [0(p?)] - 1 2t (KK =7 [O@Y)] -
= 0} ) - <) 116
2 4 5
2 Ff
31
-4 \ \ \ ) -3 ‘ ‘ ‘ ‘
-0.1 0 0.1 0.2 0.3 0.4 -0.1 0 0.1 0.2 0.3 0.4
s (GeV?) s (GeV?)

Figure 1: KK_isospin violating amplitudes matched to B¢ép?) chiral amplitudes

4. Some results and comparisons with experiment

4.1 Muskhelishvili-Omnés matricesQg, Q1

We still need to define thie= 0, 1 MO matrices which enter in the formulation of the coupled-
channel KT equations (3.9) (3.13). Fbe 0, we can rely on extensive phase-shift analysis of
it scattering performed long ago. New high-precision measurements &hlaee phase shift
near threshold fronk;, decays have appeared [11] and new Roy equations solutions have bee
derived [12, 13]. Measurements of the inelagtic — KK amplitude have also been performed
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Figure 2: Some numerical results for the components of the MO matricesl = 0 andl = 1.

(see e.g. [14]). This allows one to derive a two-channel model fof theatrix and then, imposing
appropriate asymptotic conditions, to compute numerically the correspondihgnitrix Qg by
standard methods [15, 16]. Hot 1, in contrast, there have been no measurementg gtattering
phase-shifts, but the properties of tg980) have been established via its final-state interaction
effects. We will use here a two-chanrielmatrix model [17] constrained by the properties of the
ap(980) andap(1450 resonances and by matching with NLO ChPT at low energy. We also used
implemented NLO chiral results aprr and KK | = 1 form factors, which are linearly related to
the MO matrixQs, and provide additional constraints on the behaviour of the phase difis 4

GeV. As an illustration, we show in fig. 2 the modulus of the componéhis;, [Q,]21 for | =0, 1.

4.2 n — 3mmamplitudes from KT solutions

Results for then — 3n° amplitude obtained from solving the KT equations in the elastic
approximation and their inelastic extension as discussed above, are shéign3. The figure
shows that theyy and fp resonances induce a very large energy variation in the 1 GeV region,
which is essentially absent in the elastic approximation, and how this effegagates down to
lower energies.

Numerical (preliminary) results for the Dalitz plot parametersnofs> " m° andn —
PP are shown in table 1 and compared with experimental results. The reswitsadsd with
KT solutions are predictions based on the matching equations (2.10) arigeimafitted param-
eter. The improvement, as compared to using the chiral NLO amplitude directly iphiysical
region is spectacular The effects of they, fo resonances can be as large as 10% and seem to
improve the agreement with experiment, in particular for the parameter

5. Conclusions

We have developed a formalism which, within a simple approximation scheme salewo

2We agree on this point with the results of ref. [7] but not with [18] who madme approximations when imple-
menting the matching conditions.
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Figure 3: Real part of the amplitudil,, 0 along the ling = u obtained from solving KT equations (dashed
line: elastic approximation, solid line: inelastic extemg. The shaded areas indicate the physical regions
of the decay — 31° and the scattering ® — r°r°.

take into account the influence of the scalar resonaagi@80), fo(980) as well as th&K ™ — KO
mass difference in thg — 3T amplitude within the dispersive framework of Khuri and Treiman.
Matching with the chiraD(p*) amplitude in the sub-threshold region, a prediction for the Dalitz
plot parameters is achieved which agrees reasonably well with experandrihis agreement is
improved when the scalar resonances are introduced. These reggessthat residuad(p®)
effects (i.e. which cannot be ascribed to final-state interactions) coutdlatvely small. An
estimate of these effects should, however, be useful for derivingasarvalue of the double quark
mass ratio Q.

n—mtm
Param.|| O(p*) | KT-elastic | KT-coupled| WASA KLOE
a -1.320| -1.154 -1.146 || -1.144(18)| -1.090(14)
b 0.422 0.202 0.181 0.219(19) | 0.124(11)
f 0.015| 0.107 0.116 0.115(37) || 0.140(20)
d 0.083 | 0.088 0.090 0.086(18) | 0.057(17)
n — mn°mn®
Param.| O(p*) | KT-elastic| KT-coupled PDG
a +0.014| -0.027 -0.031 -0.0315(15)

Table 1: Dalitz plot parameters from solutions of elastic and inita€T equations (preliminary results)
with NLO chiral matching, compared to experimental deteations
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