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The Λ(1405) baryon is difficult to detect in experiment, absent in many quark model calculations,
and supposedly manifested through a two-pole structure. Its uncommon properties made it subject
to numerous experimental and theoretical studies in recent years. Finite-volume Lattice-QCD
eigenvalues for different quark masses were recently reported by the Adelaide group. We compare
these eigenvalues to predictions of a model based on Unitary Chiral Perturbation Theory. The
UCHPT calculation predicts the quark mass dependence remarkably well. It also explains the
overlap pattern with different meson-baryon components, mainly πΣ and K̄N, at different quark
masses. More accurate Lattice QCD data are required to draw definite conclusions on the nature
of the Λ(1405).

The 8th International Workshop on Chiral Dynamics, CD2015 ***
29 June 2015 - 03 July 2015
Pisa,Italy

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:ramope71@gwu.edu


P
o
S
(
C
D
1
5
)
0
8
4

The pole structure of the Λ(1405)

1. Introduction

The Λ(1405) has been considered as a quasibound molecular state of the K̄N system for many
years [1, 2]. In fact, there are experimental evidences that the Λ(1405) resonance, which has been
observed in the πΣ invariant mass distribution, is mostly a K̄N and/or πΣ composite [3–7]. The
reason is that the Λ(1405) lies just 25 MeV below the K̄N threshold and has a strong influence in
the low energy K̄N data [3, 4, 6, 7]. The new kaonic hydrogen measurements by SIDDHARTA [8],
together with total cross section data and threshold branching ratios, are successfully described in
the framework of chiral SU(3) coupled-channels dynamics with input based on the NLO meson-
baryon effective Lagrangian [9], where the experimental data are used to constraint the meson-
baryon coupled channel amplitudes, giving rise to a more precise determination of the location of
the two poles. Implications of the new data for Kd scattering are discussed in Refs. [10, 11].

Since the Λ(1405) mass lies between the πΣ and K̄N thresholds, a coupled-channel description
is mandatory. In fact, all the unitary frameworks based on chiral Lagrangians for the study of the
S- wave meson baryon interaction lead to the generation of this resonance [9, 12–20]. Within the
UχPT framework, two poles close to the Λ(1405) resonance mass appear. This was also the
case in the cloudy bag model of Ref. [21]. The coupled-channel formalism takes into account all
possible pseudoscalar meson-baryon channels with I = 0; J = 1/2 (except for η ′Λ whose coupling
is supposed to be negligible): K̄N, πΣ , ηΛ and KΞ [16, 19, 22]. For example, in Ref. [22] the
two states are found in the complex plane of scattering energy at

√
s = (1390− 66 i) MeV and

(1426− 16 i) MeV. Both states lie on the same Riemann sheet, with the real parts of their pole
positions above the πΣ and below the K̄N threshold. In most approaches the lower state is wider
and couples stronger to the πΣ channel, while the upper state close to the K̄N threshold is narrower
and couples stronger to the K̄ N threshold. The position and width of the lighter state is less well
determined than in case of the heavier state [20, 23].

Evidence of the proposed two pole structure has been noticed through the study of different
reactions [13,18,24]. Indeed, the two pole structure can be studied by means of different production
reactions which favor one or the other pole [25, 26]. For instance, the reaction π−p→ K0πΣ

studied in Ref. [27] shows a different shape of the resonance, and is dominated by the πΣ→ πΣ

amplitude, hence, favoring the lower and wider state. Further evidence for two Λ(1405) states is
found in [28, 29]. The composite nature of the Λ(1405) as K̄N bound state has been investigated
in [30, 31].

The finite-volume spectrum of the Λ(1405) was predicted in Ref. [40] based on a dynamical
coupled-channel model and a chiral unitary approach. The coupled-channel K̄N, πΣ scattering
lengths in the finite volume were discussed in Ref. [41].

Recently, the spectrum of excited hyperons became accessible in ab-initio simulations of QCD
on the lattice [32–38]. The quark mass dependence of a scattering level close to the Λ(1405)
position was determined in Ref. [39].

The aim of the study is to test the two-pole hypothesis of the Λ(1405) in the light of the new
lattice QCD data from Ref. [39]. For this, we study the evolution of the poles found in the T matrix
of the meson-baryon system with Isospin= 0, Strangeness= −1 and J = 1/2, using the lowest
order potential from UχPT in the finite volume, with M2

π , for several sets of ground state masses,
the ones used in Ref. [39], and the physical-mass set. We will study the properties of the first two
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states, pole positions, distances to the K̄N and πΣ thresholds, and couplings to the meson-baryon
components, and compare to the lattice data.

2. The Λ(1405) as dynamically generated resonance in the infinite volume

In the chiral unitary approach, the Λ(1405) resonance is dynamically generated in s-wave
meson-baryon scattering from the set of coupled channels, K̄N, πΣ, ηΛ and KΞ. The scattering
equation used to study the meson-baryon system is [13]

T = (1−V G)−1V , (2.1)

where the matrix V is the interaction kernel of the scattering equation, and we take the s-wave
interaction given by the lowest order of chiral perturbation theory (the Weinberg-Tomozawa inter-
action),

Vi j(W ) =−Ci j
1

4 fi f j
(2W −Mi−M j)

√
Mi +Ei

2Mi

√
M j +E j

2M j
(2.2)

with the channel indices i, j, the baryon mass M, the meson decay constants fi, the baryon energy E
and the center of mass energy W in the meson-baryon system. The coefficients Ci j are the couplings
strengths to the meson-baryon channels, K̄N, πΣ, ηΛ and KΞ, of each reaction PiBi→ PjB j (i, j =

1,4), determined by the lowest-order chiral Lagrangian, Ci j = ((3,−
√

3
2 ,

3√
2
,0), (−

√
3
2 ,4,0,

√
3
2),

( 3√
2
,0,0,− 3√

2
), (0,

√
3
2 ,−

3√
2
,3)). The diagonal matrix GDR

i is the meson baryon loop function,
evaluated using dimensional regularization as [13]

GDR
i (W ) = i

∫ d4q
(2π)4

2Mi

q2−M2
i + iε

1
(P−q)2−m2

i + iε

=
2Mi

16π2

{
ai(µ)+ ln

M2
i

µ2 +
m2

i −M2
i +W 2

2W 2 ln
m2

i

M2
i
+

qcm

W

[
ln( W 2− (M2

i −m2
i )+2qcmW )

+ ln( W 2 +(M2
i −m2

i )+2qcmW )− ln(−W 2 +(M2
i −m2

i )+2qcmW )

− ln(−W 2− (M2
i −m2

i )+2qcmW )
]}

, (2.3)

where m are the meson masses, qcm is the 3-momentum of the meson or baryon in the center of mass
frame and µ is the scale of dimensional regularization. The remaining finite constant terms denoted
by ai(µ) are determined phenomenologically by a fit in order to reproduce the threshold branching
ratios of K−p to πΛ and πΣ observed by stopped K− mesons in hydrogen [42,43], as done in Refs.
[13–15]. The ai constants were determined in Ref. [14] using the same decay constant for all the
pseudoscalar mesons involved, f = 1.123 fπ . However, we use here different decay constants fi, f j

in Eq. (2.2) depending of which mesons are in the external legs of the pseudoscalar (P)- baryon (B)
interaction, PiBi → PjB j. These constants are fπ = 92.4 MeV, fK = 112.7 MeV and fη = 122.4
MeV for physical masses, and are obtained for unphysical masses using the SU(3) chiral unitary
extrapolation of Ref. [44]. The subtraction constants used here are aK̄N = −2.2, aπΣ = −1.6,
aηΛ =−2.5, aKΞ =−2.9. These values result in very similar amplitudes as in Ref. [14], for which
the Λ(1405) is supposed to be described predominatly by meson-baryon components [31]. In
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W0 K̄N πΣ ηΛ KΞ

1379−71i 2.2 3.1 0.8 0.5
1412−20i 3.1 1.7 1.5 0.3
1672−18i 0.8 0.3 1.1 3.4

Table 1: Coupling constants |gi| to the meson-baryon channels obtained as the residua of the scattering
amplitude at the pole position.

addition, these values are close to a natural value equivalent to the three-momentum cut-off of 630
MeV [13].

The amplitudes T i j obtained from Eq. (2.1) can be analytically continued to the complex
plane of the scattering energy W . For this, the loop functions Gi are analytically continued along
the right-hand cut into the lower W plane (Im W < 0) according to

GII
i (W ) =

{
Gi(W )+ i 2Mi qcm

4πW , for ReW > mi +Mi

Gi(W ) , else .
(2.4)

to ensure that the resonance poles closest to the physical axis are searched for. The residua ai j
−1 of

the poles factorize channel-wise, ai j
−1 = gig j, defining the coupling strengths gi of the resonance

to the meson-baryon channels. The scattering amplitude for the channels i and j close to the
resonance can be approximated as Ti j ' gig j/(W −W0). As in Refs. [13, 17, 18] the amplitude
in the present study exhibits two poles, at W0 = 1379− 71i and 1412− 20i MeV. Both poles are
situated on the same Riemann sheet. As the size of the couplings in Table 1 shows, the lighter
state couples predominantly to the πΣ channel while the heavier state couples stronger to the K̄N
channel. If the transitions between these channels are set to zero, the lighter state is still present as
a resonance in the πΣ channel while the heavier state becomes a bound state in the K̄N channel.
This demonstrates that each pole can be undertood as dynamically generated from the respective
channel. The pole position of the Λ(1670) is obtained here at W0 = 1672−18i MeV. It appears as
a quasi-bound KΞ state as the large coupling in Table 1 indicates.

3. Formalism in finite volume

One can also evaluate the loop function G in Eqs. (2.1), (2.3) with a cutoff [47],

G(W ) =
∫ qmax

0

d3q
(2π)3

ω1 +ω2

2ω1ω2

2Mi

W 2− (ω1 +ω2)2 + iε
(3.1)

where ωi =
√

m2
i + |~q |2 is the energy and ~q stands for the momentum of the meson in the center

of mass frame. A formalism of the UχPT description of the scalar meson sector in the finite
volume was introduced in Ref. [45]. Here we follow the same procedure replacing the infinite
volume amplitude T by the amplitude T̃ in a cubic box of size L and G(W ) in Eqs. (2.3) and
(3.1) is replaced by the finite volume loop function denoted as G̃, given by the discrete sum over
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eigenstates of the box

G̃(W ) =
2Mi

L3 ∑
~ql

I(W,~q) , (3.2)

with

I(W,~q) =
ω1(~q)+ω2(~q)
2ω1(~q)ω2(~q)

1
W 2− (ω1(~q)+ω2(~q))2 (3.3)

which is quantized as

~q =
2π

L
~n , (3.4)

corresponding to the periodic boundary conditions. Here the vector~n, denotes the three-dimensional
vector of all integers (Z3). This form produces a degeneracy for the set of three integers which have
the same modulus, q2 = 4π2

L2 m (here q≡ |~q| and m stands for the natural numbers). This multiplic-
ity of the degeneracy should be conveniently introduced in Eq. (3.2), which can be done using
the theta-series of a cubic lattice [40]. The sum over the momenta is limited by qmax, such that
mmax =

qmaxL
2π

. As in the infinite volume, the formalism should also be made independent of qmax

and related to a(µ), the parameter of the dimensional regularization function loop, GDR. This is
done in Ref. [46], obtaining,

G̃ = GDR + lim
qmax→∞

(
1
L3 ∑

q<qmax

I(P0,~q)−
∫

q<qmax

d3q
(2π3)

I(P0,~q)

)
≡ GDR + lim

qmax→∞
δG , (3.5)

where δG ≡ G̃−G, and G is defined in Eq. 3.1. δG is finite as qmax → ∞. The Bethe-Salpeter
equation in finite volume can be written as,

T̃ = (I−V G̃)−1V . (3.6)

The energy levels in the box in the presence of interaction V correspond to the condition

det(1−V G̃) = 0. (3.7)

In a single channel, Eq. (3.7) leads to poles in the T̃ amplitude when V−1 = G̃. As a consequence,
an infinite number of poles is predicted for a particular box size.

For one channel, the amplitude in infinite volume T for the energy levels (Wj) can be written
as

T = (G̃(Wj)−G(Wj))
−1. (3.8)

The couplings to the meson-baryon channels of the bound states in the box are evaluated as the
residues of T̃ , as in the infinite volume case.

4. Results

The energy levels in a box are evaluated by means of Eq. (3.7), which requires the potential of
Eq. (2.2) and the meson-baryon function loop in the finite volume, G̃, from Eq. (3.5), which needs
the functions (2.3) and (3.3). The previous expressions are used for the different pseudoscalar
meson masses that are used in [39] where the pion has masses from 170 to 620 MeV. Although the
pseudoscalar-meson mass dependence is explicit in G̃, we must take into account the dependence
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of the decay constants fπ , fK or fη with the mass of the pseudoscalar mesons in the potential, Eq.
(2.2). This dependence can be evaluated through the SU(3) unitary chiral extrapolation of [44].
In [44], the meson decay constants are related to the leading order masses and the low-energy
constants that multiply the tree level diagrams from the O(p4) lagrangian in the expansion of the
meson-meson scattering amplitude t(s) = t2(s) + t4(s) + ... . The leading order masses can be
obtained by solving the equations that relate the physical masses with the leading order masses, the
LECs and the pion decay constant in the chiral limit, f0. Here, f0 is fixed to reproduce the physical
point, and we obtain f0 = 79.2 MeV. The decay constants for each pseudoscalar meson mass from
the lattice calculation [39] that we obtain using the SU(3) chiral extrapolation are shown in Table
2.

Results are shown in Fig. 1. The two first energy levels from the UχPT calculation are shown
in the left figure in Fig. 1 together with the lattice data of [39]. Lattice data correspond to a size
of the box L ' 3 f m (see Table 2). For the physical point a larger size of the box, L = 4 fm, has
been used. From this figure we observe that there is good agreement between the UχPT prediction
and the lattice data for masses below 400 MeV. Actually, for larger masses the chiral extrapolation
breaks down, which we show just to notice the discrepancies between UχPT and Lattice data for
large pion masses. However, we extracted two energy levels in this energy region, what is naturally
expected since there are two thresholds, πΣ and K̄N, while the lattice data correspond to only the
second energy level. This highlights the need for more lattice data around these energies. That
could be obtained by using moving frames.

In order to understand the role of the meson-baryon channels in the energy levels extracted,
we evaluate the couplings, the residua of the amplitude in the finite volume, T̃ ∼ gig j/(W −W0) at
the pole position. They are shown in the right figure of Fig. 1. Here the left panel of bar diagrams
represents the couplings of the lowest energy level in the box, and the right one is for the second
energy level. In this figure the size of the couplings are depicted for pion masses in the range
170−515 MeV, sets 1 to 4 in Table 2, from top to bottom. From the left panel we observe that the
lowest state couples more significantly to πΣ and K̄N for pion masses below 400 MeV, with the
strength to πΣ being slightly larger. For larger masses, this trend is inverted and the K̄N strength
becomes larger. On the other hand, the couplings of the second energy level (right panel) show a
significant dominance of the K̄N component. Thus, from Fig. 1, is clear that the first two Lattice
data points in Fig. 1 correspond to the second energy level, for which the K̄N component clearly
dominantes, while the third Lattice data point could belong to either the first or second energy level
predicted from UχPT. The relatively small πΣ and K̄N strengths in the lowest level for light pion
masses can be a difficulty in order to extract this level from Lattice calculations.

We can compare with the results in the infinite volume using the formalism described in Sec-
tion II together with the SU(3) chiral extrapolation explained before. The results are shown in Fig.
2. Here, the pole positions, real and imaginary part, obtained for different pion masses as a function
of the pion mass in the infinite volume limit are depicted. The solid lines represent the πΣ, K̄N, ηΛ

and KΞ thresholds. For masses close to the physical point, the lower state is a resonance above the
πΣ threshold, while in the finite volume the lowest level is below this threshold and hence a bound
state. When the mass of the pion increases, the lower state becomes a cusp in the infinite volume
and a bound state when the pion mass increases further. On the other hand, the higher-energy state
is always below and close to the K̄N threshold for all pion masses considered. In Table 4, we show
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Set L( f m) mπ mK mη mN mΛ mΣ mΞ fπ fK fη

1 2.99 170.29 495.78 563.97 962.2 1135.8 1181.5 1323.6 94.5 113.2 122.1
2 3.04 282.84 523.26 581.72 1058.7 1173.4 1235.5 1332.8 102.5 116.1 122.3
3 3.08 387.81 559.46 605.97 1150.1 1261.0 1292.4 1377.4 109.5 118.5 122.6
4 3.23 515.56 609.75 638.07 1274.5 1333.4 1353.5 1401.8 116.3 120.6 122.4
5 3.27 623.14 670.08 685.01 1420.3 1434.2 1449.8 1472.4 120.1 121.9 122.6

Table 2: Pseudoscalar meson decay constants obtained from the SU(3) chiral extrapolation with the masses
used in [39]. Units are MeV.

the comparison between the two first pole positions and coupling constants in the infinite and finite
volume. In this table, bK̄N and bπΣ denotes the distances to the K̄N and πΣ thresholds, where the
negative sign means that the state is above threshold. For masses below 400 MeV, we observe that
the second state in the finite volume has also a dominant K̄N component, and is also between both
πΣ and K̄N thresholds. This state has similar coupling strengths to the meson-baryon components
than in the infinite volume. On the contrary, the lower state shows very different properties in the
infinite volume limit and in the box for low pion masses, and similar ones for high pion masses. For
low pion masses, the state in the infinite volume limit is a resonance while it is a bound state in the
box, where the main channels are πΣ and K̄N. However, the couplings to these channels are quite
small compared to what one observes in the infinite volume limit (and also to the K̄N coupling of
the higher energy state from the lattice data). For high pion masses, the state in the infinite volume
limit becomes a bound state, and then the couplings to all the channels become very similar to the
ones in the box as one can see from Table 4. However, in this case the masses of the poles obtained
are very far away from the Lattice data probably because the chiral extrapolation breaks down.

5. Conclusions

In this work we have studied the M2
π dependence of the energy levels in a box for the system

of meson-baryon coupled channels with quantum numbers Isospin= 0, Strangeness=−1 and J = 0
using the lowest order potential from UχPT. This dependence has been compared to the lattice
data of [39] and also extrapolated to the infinite volume. UχPT predics a two-pole structure for
the Λ(1405). In the finite volume, we find two energy levels close to the πΣ and K̄N thresholds.
The second energy level agrees very well with the lattice data of Ref. [39] for pion masses below
400 MeV, in the limits of applicability of the theory. This energy level shows large coupling to
K̄N and has similar properties as the higher pole of the state predicted by UχPT in the infinite
volume limit and related to the Λ(1405). The lower state predicted by the UχPT is not found in
the lattice calculation of Ref. [39]. In addition, the lower state shows as a bound state below the
πΣ threshold (i. e. as a threshold level), while there is no level in the finite volume of the first pole
at the energy of the Λ(1405), that is a resonance dominated by the πΣ channel in UχPT. For high
pion masses the lower pole in the infinite volume changes to a bound state below the πΣ threshold
with very similar coupling stregths in the infinite and finite volume. This work stresses the
difficulty of finding resonances in Lattice calculations and urges the need for more theoretical
progress in this side. It also shows the difficulty to extract the ground state from Lattice QCD in
this sector, where definitely more lattice data are needed in order to understand the structure of the
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Figure 1: Left: Comparison between the UχPT prediction and the Lattice data of Ref. [39] done for sets 1
to 5, and the physical set. Right: Couplings |gi| to the different channels of the first two energy levels found
in the box for the pion masses from 170 to 515 MeV (sets 1 to 4)
.
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Λ(1405). In any case, the existing data of Ref. [39] are predicted well and are compatible with the
two-pole hypothesis for the Λ(1405).
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