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The low-energy theorems (LET) for NN scattering provide important relations between the co-
efficients in the effective-range expansion (ERE) of the amplitude, which are governed by the
long-range part of the potential. In this work we extend the LET to the case of unphysical pion
masses. It is emphasized that correlations provided by LET can be used as nontrivial consistency
checks for lattice calculations. As an example, we use the Mπ dependence of the effective range
suggested in the recent lattice study by NPLQCD collaboration [1] as input to predict the Mπ

dependence of the binding energy and the shape parameters.
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1. Introduction

The understanding of certain fine-tuning in the parameters of the Standard Model is of particular
importance in modern hadron and nuclear physics. The fine-tuning refers in particular to the very
specific values of the light-quark masses so that only very small variations in these parameters
would still allow our Universe to exist in the form it has now, see Ref. [2] for a recent review. In
particular, the proximity of the excited state of 12C - the Hoyle state - to the triple alpha-particle
threshold is known to be crucial for the enhanced resonance formation of the life-important ele-
ments 12C and 16O in stars. The dependence of the excitation energy of the Hoyle state on the
light-quark masses was analysed recently within ab initio nuclear lattice simulations [3, 4]. It was
understood that the variation of the excitation energy by ±100 KeV which is still consistent with
the sufficient abundances of 12C and 16O [5] can be maintained only if the quark masses are varied
by a few per cents. By far the dominant source of the theoretical uncertainty in this calculation
is related to the lack of knowledge of the quark mass dependence of the nuclear force or, more
precisely, of the nucleon-nucleon (NN) S-wave scattering lengths. The quark mass dependence of
the nuclear force plays an important role for investigating the time dependence of the fundamental
constants beyond the Standard Model. In particular, the theory of Big Bang nucleosynthesis (BBN)
and the observed primordial abundances allow one to estimate a possible quark mass variation at
the time of BBN [6, 7], provided that the quark mass dependence of the S-wave NN scattering
lengths and the binding energies of the light nuclei from 3He to 7Be is known.

In recent years, we have witnessed a significant progress in the lattice QCD calculations which
are considered as the primary source of information about the light-quark or equivalently the pion
mass dependence of the nuclear observables. In particular, the fully dynamical calculations at
relatively low unphysical pion masses Mπ ' 300 MeV (or a bit higher) have now become possible
(see e.g. Refs. [8, 9, 10]). The connection of these results with the physical world can be provided
by chiral effective field theory (chiral EFT) which at these pion masses might still be within its
range of validity. Notice that not only the binding energies of nuclear observables but also the NN
scattering data – phase shifts and effective range parameters – are calculable on lattice, see Refs.
[10, 1] for the recent studies of the 1S0 and 3S1 channels by NPLQCD collaboration at Mπ ' 450
and 800 MeV and Ref.[11] for the analysis of the higher partial waves at Mπ ' 800 MeV by
CalLat collaboration. Interestingly, the general trend of different lattice calculations [8, 9, 10, 1, 12]
exhibits a stronger attraction both in the 1S0 and 3S1 channels when one goes away from the physical
point. Consequently, both the deuteron and the dineutron systems in these works are found to be
bound at unphysical pion masses with the deuteron binding energy larger than the physical one.
These results are, however, not supported by the HAL QCD collaboration which finds no bound
states in these channels for pion masses ranging from 469 to 1171 MeV [13]. It should be noted that
unlike the other studies, a different approach by making use of the NN potential at the intermediate
step of the calculation is employed by the HAL QCD collaboration. The puzzle is getting even
more intriguing given that the chiral EFT calculations generally suggest less attraction at Mπ larger
than the physical value [14, 15, 16, 7, 17]. These calculations, however, rely on naturalness or
resonance saturation estimates for the Mπ -dependent 4N contact operator at next-to-leading order.

In this contribution we follow the lines of Ref.[18] to argue that the low-energy theorems in NN
scattering can be useful for providing consistency checks of both lattice results and theory ap-
proaches. We first discuss the LET in the physical world and then generalise them to unphysical
Mπ .
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2. Low-energy theorems

Long-range interactions are responsible for the near-threshold left-hand singularities of the partial
wave scattering amplitude and control its energy dependence. In particular, they impose correla-
tions between the coefficients in the effective range expansion which can be regarded as low-energy
theorems [19, 20, 21, 22, 23].

Consider two non-relativistic particles of mass m interacting via some non-singular potential of the
finite range. The corresponding S-matrix for an uncoupled channel with the zero orbital angular
momentum can be written in terms of the T -matrix as1

S = e2iδ (k) = 1− i
(

km
8π2

)
T (k) , (2.1)

where k denotes the scattering momentum in the center-of-mass system (cms). The scattering
amplitude T in turn can be expressed in terms of the so-called effective range function F(k) ≡
k cotδ (k) via

T (k) =−16π2

m
1

F(k)− ik
. (2.2)

Contrary to the scattering amplitude, the effective range function does not possess the kinematic
unitarity cut and is a real meromorphic (i.e. analytic except for poles) function of k2 near the origin
k = 0 [25, 26]. It can, therefore, be Taylor-expanded about the origin leading to the well-known
effective range expansion which has the form2

kcotδ (k) =−1
a
+

1
2

rk2 + v2k4 + v3k6 + v4k8 + . . . , (2.3)

where a and r refer to the scattering length and the effective range, respectively, while vi denote the
so-called shape parameters. The convergence radius of the ERE is restricted by the lowest-lying
left-hand singularity associated with the potential. In particular, the longest-range part of the NN
force is due to the one-pion-exchange potential (OPEP), which has the left-hand cut starting from
the branch point at the cms momenta k =±iMπ/2. The ERE for NN scattering is therefore expected
to converge up to about 70 MeV cms momenta or laboratory energies |Elab| ∼M2

π/(2mN) = 10.5
MeV.

The framework of the ERE can be generalized to the case in which the potential is given by a sum of
long-range (rL ∼M−1

L ) and short-range (rS ∼M−1
S �M−1

L ) potentials, VL and VS, respectively [28].
The main idea of Ref. [28] is to keep the long-range physics explicitly, in particular the left-hand
cuts associated with the long-range potential VL. Then, one can introduce the modified effective
range function FM determined by the short-range interaction VS which can be expressed in terms
of the phase shift corresponding to the full potential VL +VS and the quantities associated with the
long-range interaction (labelled by L)

FM(k2)≡ RL(k)+
k

| f L(k)|
cot[δ (k)−δ

L(k)] . (2.4)

1Generalizations to the nonzero orbital angular momenta and to the coupled channel case are straightforward, see
e.g. Refs. [24, 18].

2We assume here that the phase does not cross zero in the region of validity of the ERE. If this is the case the Taylor
expansion should be replaced, e.g. by the Pade approximants [27].
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where f L(k) ≡ f L(k,r)
∣∣
r=0 denotes the Jost function corresponding to the Jost solution of the

Schrödinger equation f L(k,r) for the potential VL while RL(k) is its derivative RL(k)= lim
r→0

[
d
dr

f L(k,r)
f L(k)

]
.

Further, δ L(k) denotes the phase shift for the potential VL. Unlike the ordinary ERE, FM(k2) is a
real meromorphic function in a much larger region set by r−1

S . In particular, for Yukawa-type poten-
tials, the region in which the modified effective range function is meromorphic is set by |k|<MS/2.
Similarly to the ERE, one can Taylor expand the function FM(k2) near the origin via

FM(k2) =− 1
aM +

1
2

rMk2 + vM
2 k4 + vM

3 k6 + vM
4 k8 + . . . . (2.5)

This expansion is referred to as the modified effective range expansion (MERE).

We are now in the position to clarify the meaning of the LET. Inverting Eq. (2.4) one can calculate
the physical phase shift δ in terms of the known "long-range" quantities and the short-range physics
systematically parameterized through the MERE

k cotδ =
| f L(k)|

(
FM(k2)−RL(k)

)
k cotδ L(k)− k2

| f L(k)|(FM(k2)−RL(k))+ k cotδ L(k)
(2.6)

For example, at leading order (LO), the modified effective range function is approximated as
FM

l (k2) ' −1/aM. Thus, using a single piece of information about the short-range interaction
in form of aM or, equivalently, the usual scattering length a allows one to predict all coefficients in
the ERE

r =
α(aML)

ML
, v2 =

β (aML)

M3
L

, v3 =
γ(aML)

M5
L

, v4 =
δ (aML)

M7
L

, . . . (2.7)

where α,β ,γ , δ , . . . are known coefficients. These predictions are accurate up to corrections emerg-
ing from the second term in the MERE, i.e. rM. Using aM and rM as input at NLO, or equivalently
the physical scattering length and the effective range, one can improve predictions for the shape
parameters including the corrections ∼ rM/rL ' ML/MS. The resulting correlations between the
subthreshold parameters at each fixed order in this expansion are regarded as LET. For an example
of an exactly solvable model, see Ref. [21].

3. Application of low-energy theorems to NN scattering

The longest range part of the NN force is due to the OPE potential so that the LET in NN scatter-
ing are expected to be governed by the left hand cut generated by the OPEP. Further, the OPEP is
singular at small distances and requires regularization and renormalization. Therefore instead of
using the quantum mechanical approach discussed in the previous section, for the NN system we
formulate the LET within the modified framework of Weinberg chiral EFT [29, 17]. Since the cor-
relations between the ERE parameters are inherently long-range phenomena, after renormalization
the results should be model and regularization scheme independent.

In particular, to find the scattering amplitude T we solve the Lippmann-Schwinger type integral
equation introduced by Kadyshevsky [30] which, for the case of the fully off-shell kinematics,
takes the form

T
(

p0,~p ′,~p
)
=V

(
~p ′,~p

)
+
∫

d3q V
(
~p ′,~q

)
G(p0,q) T

(
p0,~q,~p

)
, (3.1)
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where G(p0,q) is the free Green function

G(p0,q) =
m2

N

2(2π)3
1(

~q 2 +m2
N

)(
p0−

√
~q 2 +m2

N + iε
) . (3.2)

Further, ~p (~p ′) is the incoming (outgoing) three-momentum of the nucleon in cms, p0 =
√
~k2 +m2

N

with mN denoting the nucleon mass and~k being the corresponding three-momentum of an incoming
(on-mass-shell) nucleon. The potential at LO consists of the OPEP and one contact term in each of
the two S-wave channels (1S0 and 3S1)

VLO =− g2
A

4F2
π

~σ1 ·~q ~σ2 ·~q
~q 2 +M2

π

τ1 · τ2 +C0, C0 =CS +CT ~σ1 ·~σ2, (3.3)

where ~q ≡ ~p ′−~p is the momentum transfer, ~σi (τ i) denote the spin (isospin) Pauli matrices of
the nucleon i, while gA and Fπ refer to the axial vector coupling of the nucleon and pion decay
constant, respectively. As discussed in Ref. [29], the LO potential in the applied framework is
exactly renormalizable3, that is all divergencies appearing due to iterations of the OPEP can be
absorbed into the redefinition of the contact term C0 at LO. As a consequence, the cutoff in the
integral equation can be put to infinity, so that no finite cutoff artifacts can affect the LET.

In Fig. 1 we demonstrate the results for the LET in the spin triplet channel where the LET are
expected to work best due to the strong tensor force in the OPEP, see also Refs. [18, 32] for the
discussion of the spin singlet case. In particular, we adjust the contact term to reproduce the
scattering length a which is the only input quantity at LO. Then, the LET allow one to predict the
values of the effective range and the shape parameters for each given value of a, as discussed in
the previous section. As can be seen from Fig 1, for the physical value of a the LET exhibit a
very good agreement with the empirical values extracted from the Nijmegen PWA [24], see also
Table 1. The accuracy in the extracted parameters (cf. e.g. the effective range in the first and third
rows of Table 1) appears to be even better than one could naively expect from the ratio of energies
corresponding to the first left-hand cut included due to OPE and the second one not considered
explicitly at this order. The reason for the better-than-naively-expected convergence of the LET
can be accounted for by the fact that iterations of OPE generate also the large portion of the left-
hand cut contributions from two- and multiple-pion exchanges.

At NLO a subleading short-range interaction with two space derivatives starts to contribute whose
strength can be adjusted to reproduce the experimental value of the effective range. In this way
this subleading short-range term accounts for the presence of additional degrees of freedom (e.g.
irreducible two-pion exchanges) which are integrated out in our approach but may affect the dis-
continuity along the more distant left-hand cuts. Given the arguments formulated above, the results
for the LET are insensitive to details of the short-range interaction once its strength is adjusted to
reproduce the physical observable. It appears to be convenient to employ resonance saturation to
model higher-order contact interactions by means of a heavy-meson-exchange.

VNLO =V1π(~q)+C0 +β
~σ1 ·~q ~σ2 ·~q
~q 2 +M2 , (3.4)

3For the recent extension of the approach to D̄D∗ scattering see Ref. [31] where chiral extrapolations of the X(3872)
binding energy were discussed.
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Figure 1: Correlations between the inverse scat-
tering length a−1, effective range r and the first
three shape parameters v2, v3 and v4 induced by
the one-pion exchange interaction in the 3S1 chan-
nel. Solid rectangles, diamonds, open triangles
and circles correspond to the values of r, v2, v3
and v4, respectively, extracted from the Nijmegen
partial wave analysis [33, 34]. The results corre-
spond to the Blatt-Biedenharn parameterization of
the S-matrix [35].

Neutron-proton 3S1 partial wave a [fm] r [fm] v2 [fm3] v3 [fm5] v4 [fm7]

LO [29] fit 1.60 −0.05 0.82 −5.0

NLO [18] fit fit 0.06 0.70 −4.0

Empirical values [24] 5.42 1.75 0.04 0.67 −4.0

NLO KSW [19] fit fit −0.95 4.6 −25

Table 1: Effective-range parameters in the 3S1 partial wave in the Blatt-Biedenharn parameterization of the
S-matrix [35]. The first two rows show the effective range parameters extracted from the LET at LO and
NLO, respectively. The third row corresponds to the results of the Nijmegen PWA [24]. The last row shows
the predictions obtained within the KSW framework [36] which relies upon a perturbative treatment of the
OPEP. These results are taken from Ref. [19] and show very large deviations from the empirical values.

where the heavy-meson mass M is set M = 700 MeV and the strength β is adjusted to reproduce
the empirical value of the effective range. Indeed, the deviation in the results caused by using the
sigma-like scalar potential instead of the tensor one in Eq. (3.4) for the sub-leading short-range
interaction is negligibly small. The predicted values of the shape parameters after fixing the values
of C0 and β are listed in Table 1 and, as expected, show a clear improvement as compared with the
LO results. In fact, the NLO LET appear to be accurate at the level of a few percent (except for v2
which is unnaturally small).

4. LET for NN scattering: generalization to unphysical pion masses

Generalization of LET to unphysical pion masses is straightforward:

• The main dynamical effect of changing the pion mass in the OPEP corresponds to shifts of
the branch points of all left-hand cuts.

• The discontinuity across the left-hand cuts changes when the ratio gA/Fπ in the OPEP is
varied with Mπ .

• The discontinuity across the left-hand cuts also feels the variation with Mπ of the nucleon
mass in the integral equation (3.1) .
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Figure 2: Quadratic polynomial regression fits to lattice QCD data for the pion decay constant Fπ , nucleon
mass mN and the nucleon axial-vector coupling constant gA. Lattice data for Fπ , mN and gA are from Refs.[37,
38]. Filled circles without error bars show the experimentally measured values. The dashed lines depict our
fit results to the lattice data and the experimental values while the shaded bands correspond to the 67%
confidence levels of the interpolations.

To account for the last two effects in a way that minimizes the theoretical uncertainty, we make use
of the lattice-QCD results for the Mπ dependence of gA,Fπ and mN , see Fig. 2. In particular, we
performed quadratic polynomial regression fits (as functions of M2

π ) of lattice-QCD data for pion
masses up to Mπ = 500 MeV, as shown in Fig. 2, see also Ref. [18] for further details. Using the
above results we can generalize the LO LET by calculating r and vi as functions of the (inverse)
scattering length at unphysical values of the pion mass. The resulting predictions are shown by
the various thick lines in Fig. 3 for Mπ = 200, 300 and 400 MeV. Notice that contrary to chiral
EFT extrapolations, we perform calculations with different pion masses as if we lived in different
worlds, in which the physical value of the pion mass were Mπ = 200, 300, . . . MeV. Thus for each
given pion mass the value of C0 is adjusted to reproduce the given value of the scattering length
used as input.

In order to extend these results to NLO, we need to specify the Mπ dependence of the subleading
short-range interaction which is modeled via resonance saturation, see Eq. (3.4). We assume that
the M2

π dependence of the strength β of the short-range interaction is within the envelope built by
the lines which go through the physical point and describe a ±50% change in the value of β for
Mπ = 500 MeV. Note that such an estimation is justified for the considered quantities such as gA,
Fπ and mN , as can be seen from Fig. 2.

Our NLO LET predictions for the effective range and the shape parameters viewed as functions
of the inverse scattering length are visualized in Fig. 3 by the light-shaded bands. These bands
correspond to the variation of β at a given value of Mπ , as described above. For pion masses
below Mπ ' 200 MeV, the difference between the predictions based on LO and NLO LET is very
small which points at a very rapid convergence of the results. Also, the employed variation of β

is essentially invisible for such values of the pion mass. For heavier pions, both the differences
between the LO and NLO LET as well as the uncertainty in the results associated with the Mπ

dependence of β start to increase. In particular, for pion masses Mπ ' 400 MeV one can observe
large deviations between the shape parameters at LO and NLO which are maximized when one
considers the extreme values of the inverse scattering length. On the other hand, in the region of
the plateau which corresponds to (aMπ)

−1 ' 0.2−0.7 the deviations are still not that large. Also
the effective range does not change much when one goes from LO to NLO so that the theory might
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2

Figure 3: Correlations between the inverse scattering length a−1, effective range r and the first three shape
parameters v2, v3 and v4 in the 3S1 partial wave induced by the one-pion exchange interaction. Various
thick lines show the predictions of the LO LET while light-shaded bands (hardly visible for small Mπ )
between thin lines depict the results of NLO LET and reflect the estimated uncertainty due to unknown Mπ

dependence of the subleading short-range interaction as explained in the text.

still be convergent and predictive. Eventually, decrease in the predictive power of the LET is to be
expected for heavier pions due to the decreasing separation between the soft and hard scales in the
problem. On the other hand, for heavy pion masses the ρ-meson mass becomes comparable with
2Mπ , so that the explicit treatment of two-pion exchanges is not needed.

5. Implications for lattice QCD

The LET can provide important consistency checks for the lattice results if several parameters
in the ERE are extracted. Unfortunately, not much information on the scattering parameters is
available so far4. An exception is the work of Ref. [1], which provides, in addition to the binding
energies, also the values of the scattering length, effective range and even the first shape parameter
at the pion mass of Mπ ' 800 MeV. Clearly, such heavy pion masses are beyond the applicability
range of the LET. On the other hand, the authors of Ref. [1] conjectured that the quantity Mπr
may behave linearly with the pion mass, as visualized in the left panel of the first row in Fig. 4.
Taking this conjecture for granted and using the effective range as an input parameter to adjust the
short-range force, we can apply the LET to predict the binding energy and confront it with lattice
data. The results of the LET for the binding energy, binding momentum and the first three shape
parameters are illustrated in Fig. 4. Interestingly, the general trend of the binding energy extracted
from lattice simulations5 is nicely described by the LET. Furthermore, due to the left-hand cuts of
OPE, the shape parameters appear to be very vivid functions of Mπ , the feature which is in principle
testable in lattice QCD. In addition, in Ref.[18] we also predicted all parameters in the ERE using
the measured binding energies for Mπ = 300MeV [9] and Mπ = 390MeV [8]. Further implications
will be discussed in the upcoming publications.

4The analysis of recent NPLQCD results at Mπ ∼ 450 MeV [10] will be discussed elsewhere.
5The only exception refers to the data from Ref. [13] which do not support the existence of the bound state for pion

masses heavier than the physical one.

8



P
o
S
(
C
D
1
5
)
0
9
4

Low-energy theorems for NN scattering V. Baru

0

1

2

3

4

0 0.2 0.4 0.6 0.8

M⇡ [GeV]

M⇡r

0

1

2

3

4

0 0.2 0.4 0.6 0.8

M⇡ [GeV]

M⇡r

5

0

5

10

15

20

25 Bd [MeV]

0

0.1

0.2

0.3

0.4

0.5
�d/M⇡

0

2

4

6

8

10

a/r

-0.5

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8

M⇡ [GeV]

M3
⇡v2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

M⇡ [GeV]

M5
⇡v3

-2

-1

0

1

0 0.2 0.4 0.6 0.8

M⇡ [GeV]

M7
⇡v4

Yamazaki et al.
NPLQCD

NPLQCD, prelim.

3

0

5

10

15

20

25 Bd [MeV]

0

0.1

0.2

0.3

0.4

0.5
�d/M⇡

0

2

4

6

8

10

a/r

-0.5

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8

M⇡ [GeV]

M3
⇡v2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

M⇡ [GeV]

M5
⇡v3

-2

-1

0

1

0 0.2 0.4 0.6 0.8

M⇡ [GeV]

M7
⇡v4

Yamazaki et al.
NPLQCD

NPLQCD, prelim.

3

Figure 4: First row left panel: Linear with Mπ interpolation of the quantity Mπ r in the 3S1 partial wave as
suggested in Ref. [1]. First row middle and right panels: NLO LET predictions for the pion mass dependence
of the deuteron binding energy and the ratio γd/Mπ ; Second row: NLO LET predictions for the first three
shape parameters in the 3S1 partial wave. Dark-shaded bands show our estimation of the uncertainty of the
NLO LET due to the unknown Mπ dependence of the subleading short-range interaction, light-shaded bands
depict the uncertainty in the linear extrapolation of the effective range used as input.

6. Summary

Model independent correlations between the parameters in the effective range expansion caused by
long-range interactions are investigated for NN scattering. They are called low-energy theorems.
In particular, using the NN scattering length in the 3S1 channel as input, the effective range and the
shape parameters predicted from LET at leading order appear to be in good agreement with those
extracted from Nijmegen PWA. If data for the effective range are employed in addition to constrain
subleading short-range interactions, the shape parameters at NLO are predicted at the few per cent
level. The generalization of LET to unphysical pion masses allows one to analyse the correlations
induced by one-pion-exchange away from the physical point. Several implications of the analysis
for lattice QCD are discussed.
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