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1. Introduction

Chiral effective field theory (EFT) as proposed in the pioneering works of Weinberg [1] is a

powerful tool for the derivation of baryonic forces. In this scheme there is an underlying power

counting which allows to improve calculations systematically by going to higher orders in a per-

turbative expansion. In addition, it is possible to derive two- and corresponding three-body forces

as well as external current operators in a consistent way.

Recently, a hyperon-nucleon (Y N) interaction has been derived up to next-to-leading order

(NLO) in chiral EFT by the Jülich-Bonn-Munich group [2]. At that order there are contributions

from one- and two-pseudoscalar-meson exchange diagrams and from four-baryon contact terms

without and with two derivatives. SU(3) flavor symmetry is imposed for constructing the Y N

interaction in order to reduce the number of free parameters, in particular the number of low-

energy constants (LECs) associated with the arising contact terms. In the actual calculation the

SU(3) symmetry is broken, however, by the mass differences between the involved mesons (π , K,

η) and between the baryons (N, Λ, Σ). An excellent description of available ΛN and ΣN scattering

data could be achieved at NLO [2].

The Y N interaction is an important ingredient for microscopic calculations of hypernuclei

and it is also relevant for understanding the physics of neutron stars. Motivated by these aspects

we examine the in-medium properties of the Y N interaction derived within chiral EFT [3, 4]. In

particular, the single-particle potentials for the Λ and Σ hyperons in nuclear matter are evaluated in

a conventional G-matrix calculation, and the Scheerbaum factor [5] associated with the hyperon-

nucleus spin-orbit interaction is computed. One issue of special interest is the Σ-nucleus potential.

There is strong phenomenological evidence that it is repulsive [6]. However, microscopic models

of the Y N interaction, fitted to ΛN and ΣN scattering data, often fail to produce a repulsive Σ-

nuclear potential. Specifically, for models based on meson-exchange dynamics it is rather difficult

to obtain such a repulsion [7].

Another issue of interest is the Λ-nucleus spin-orbit interaction where empirical information

suggests that it should be rather weak [8, 9, 10]. Therefore, we investigate also the spin-orbit

interaction and, in particular, the role of the antisymmetric spin-orbit force in the Y N system. As

mentioned above, the chiral EFT approach yields a potential that contains, besides pseudoscalar

meson exchanges, a series of contact interactions with an increasing number of derivatives. In

this approach a contact term representing an antisymmetric spin-orbit force arises already at NLO.

It induces 1P1–3P1 transitions in the coupled (isospin I = 1/2) ΛN–ΣN system. The low-energy

constant associated with the contact term could not be pinned down by a fit to the existing ΛN and

ΣN scattering data as found in Ref. [2] and, thus, it was simply put to zero in that work. However,

its value can be fixed from investigating the properties of the Λ hyperon in nuclear matter and,

specifically, it can be utilized to achieve a weak Λ-nuclear spin-orbit potential [3, 4].

2. The Y N interaction in chiral EFT

The derivation of the chiral baryon-baryon potentials for the strangeness sector at leading

order (LO) using the Weinberg power counting is outlined in Refs. [11, 12]. Details for the NLO

case can be found in Ref. [2], see also [13]. The LO potential consists of four-baryon contact
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terms without derivatives and of one-pseudoscalar-meson exchanges while at NLO contact terms

with two derivatives arise, together with contributions from (irreducible) two-pseudoscalar-meson

exchanges. The contributions from pseudoscalar-meson exchanges (π , η , K) are completely fixed

by the assumed SU(3) flavor symmetry. On the other hand, the strength parameters associated with

the contact terms, the LECs, need to be determined in a fit to data. How this is done is described in

detail in Ref. [2]. Note that we impose also SU(3) symmetry for those contact terms which reduces

the number of independent LECs that can contribute.

The reaction amplitudes are obtained from the solution of a coupled-channels Lippmann-

Schwinger (LS) equation for the derived interaction potentials:

T
ρ ′′ρ ′,J

ν ′′ν ′ (p′′, p′;
√

s) = V
ρ ′′ρ ′,J

ν ′′ν ′ (p′′, p′)+

∑
ρ ,ν

∫ ∞

0

d pp2

(2π)3
V

ρ ′′ρ ,J
ν ′′ν (p′′, p)

2µν

q2
ν − p2 + iη

T
ρρ ′,J

νν ′,J (p, p′;
√

s) .

The label ν indicates the particle channels and the label ρ the partial wave. µν is the per-

tinent reduced mass. The on-shell momentum in the intermediate state, qν , is defined by
√

s =
√

m2
B1,ν

+q2
ν +

√

m2
B2,ν

+q2
ν . Relativistic kinematics is used for relating the laboratory energy Tlab

of the hyperons to the c.m. momentum.

We solve the LS equation in the particle basis, in order to incorporate the correct physical

thresholds. Depending on the total charge, up to three baryon-baryon channels can couple. The

Coulomb interaction is taken into account appropriately via the Vincent-Phatak method [14]. The

potentials in the LS equation are cut off with a regulator function, fR(Λ) = exp
[

−
(

p′4 + p4
)

/Λ4
]

,

in order to remove high-energy components [15]. We consider cutoff values in the range Λ = 550 –

700 MeV (LO) and Λ = 500 – 650 MeV (NLO), similar to what was used for chiral NN potentials

[15].

3. Results for ΛN and ΣN in free space

Our results for ΛN and ΣN scattering are presented in Fig. 1. The bands (red for NLO and

green for LO) represent the variation of the cross sections based on chiral EFT within the considered

cutoff region, i.e. 550-700 MeV in the LO case [11] and 500-650 MeV at NLO. For comparison

also results for the Jülich ’04 [16] meson-exchange model are shown (dashed line).

Obviously, the available ΛN and ΣN scattering data are very well described by our NLO EFT

interaction. In particular, and as expected, the energy dependence exhibited by the data is visibly

better reproduced within our NLO calculation than at LO. This concerns especially the Σ+p chan-

nel. But also for Λp the NLO results are now well in line with the data even up to the ΣN threshold.

Furthermore, one can see that the dependence on the cutoff mass is strongly reduced in the NLO

case. Additional results, for differential cross sections and for phase shifts, can be found in Ref. [2].

Besides an excellent description of the Y N data the chiral EFT interaction yields a satisfactory

value for the hypertriton binding energy, see Ref. [2]. Calculations for the four-body hypernuclei
4
ΛH and 4

ΛHe based on the EFT interactions can be found in Ref. [17].
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Figure 1: Total cross sections for ΛN and ΣN scattering as a function of the laboratory momentum plab. The

green band shows the chiral EFT results to LO for variations of the cut-off in the range Λ = 550–700 MeV,

while the red band are results to NLO for Λ = 500–650 MeV. The dashed curve is the result of the Jülich

’04 [16] meson-exchange potential.

4. Results for the Λ and Σ in nuclear matter

Recently, we investigated also the properties of our Y N interactions in nuclear matter [3, 4].

Specifically, we performed conventional first-order Brueckner calculations based on the standard

(gap) choice of the single-particle (s.p.) potentials [3] as well as with the continuous choice [4]. In

the present work we focus on the results of Ref. [3].

Starting point of our nuclear matter calculation is the Bethe-Goldstone equation

〈Y N|GYN(ζ )|Y N〉 = 〈Y N|V |Y N〉
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+ ∑
Y ′N

〈Y N|V |Y ′N〉 〈Y ′N| Q

ζ −H0

|Y ′N〉 〈Y ′N|GYN(ζ )|Y N〉 , (4.1)

which defines the Y N reaction matrix GYN . Here, Q denotes the Pauli projection operator, which

excludes those intermediate Y N states with the nucleon inside the Fermi sea. The starting energy

ζ in the Bethe-Goldstone equation (4.1) is defined by

ζ = EY (pY )+EN(pN) , (4.2)

where the single particle energies of the baryons are given by

Eα(pα) = Mα +
p2

α

2Mα
+Uα(pα), α = Y, N, (4.3)

i.e. these include the (nonrelativistic) kinetic energy and the baryon mass, and also the s.p. potential

Uα . The nucleon s.p. potential UN is taken from a separate calculation of pure nuclear matter based

on a phenomenological NN potential, see the comment in Ref. [3], while the s.p. potential of the

hyperons is calculated via

UY (pY ) =

∫

pN≤kF

d3 pN 〈Y N|GYN(ζ (UY ))|Y N〉 , (4.4)

which means that it is determined self-consistently with Eq. (4.1) in the standard way. kF is the

Fermi momentum which is related to the nuclear matter density ρ via ρ = (2/3π2)k3
F . Finally,

in lowest order in the so-called hole-line expansion [18], to which we restrict ourselves here, the

binding energy of a hyperon in infinite nuclear matter is given by BY (∞) =−UY (pY = 0), evaluated

at the saturation point of nuclear matter.

The strength of the s.p. spin-orbit potential of a hyperon in nuclear matter is most conveniently

quantified by the so-called Scheerbaum factor SY [5], which is defined by [19]

U ℓs
Λ (r) =−π

2
SY

1

r

dρ(r)

dr
ℓ ·σ . (4.5)

Here ρ(r) is the nucleon density distribution and ℓ the single-particle orbital angular momentum

operator. The quantity SY can be expressed in terms of the (partial-wave projected) G-matrix ele-

ments in the form

SY (pY ) = − 3π

4(kF )3
ξY (1+ξY )

2 ∑
I0,J

2I0 +1

(2IY +1)
(2J +1)

∫ pmax

0

d p

(2π)3
W (p, pY )

{

(J+2)G
J,I0

Y1J+1,Y 1J+1(p, p; pY )

+G
J,I0

Y1J,Y 1J(p, p; pY )− (J−1)G
J,I0

Y1J−1,Y 1J−1(p, p; pY )

−
√

J(J+1)
[

G
J,I0

Y1J,Y 0J(p, p; pY )+G
J,I0

Y0J,Y 1J(p, p; pY )
]}

, (4.6)

with G
J,I0

YSL,Y ′S′L′ being the matrix element for a specific total angular momentum J and isospin I0 and

outgoing and incoming spins (S, S′) and orbital angular momenta (L, L′). The explicit expression

for the weight function W (p, pY ) can be found in Ref. [3], together with a more detailed description

of the formalism. ξY denotes the mass ratio, ξY = MN/MY .
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Figure 2: The Λ and Σ s.p. potentials, UΛ(pΛ = 0) and UΣ(pΣ = 0), as a function of the Fermi momentum

kF . The green band shows the chiral EFT results to LO for variations of the cut-off in the range Λ = 550–

700 MeV, while the red band are results to NLO for Λ = 500–650 MeV. The dashed curve is the result of

the Jülich ’04 [16] meson-exchange potential. The vertical lines indicate the “empirical” range taken from

Ref. [9].

Let us now come to the results. Table 1 summarizes the values for the Λ and Σ potential depths,

UΛ(pΛ = 0) and UΣ(pΣ = 0), evaluated at the saturation point of nuclear matter, i.e. for kF = 1.35

fm−1. Corresponding results obtained for the Jülich meson-exchange potentials from 2004 [16]

and 1994 [20] are also included. In case of the EFT interactions we show the variation with the

cutoff. These are comparable for UΛ at LO and NLO, but noticeably reduced for UΣ at NLO. The

dependence of the hyperon potential depths on the Fermi momentum is displayed in Fig. 2.

The predictions for UΛ(0) at NLO, for nuclear matter saturation density as given in Table 1,

are well in line with the ’empirical’ value for the Λ binding energy in nuclear matter of about -27

to -30 MeV, deduced from the binding energies of finite Λ hypernuclei [21].

Table 1: Results for the s.p. potentials UΛ(0) and UΣ(0) (in MeV) based on our EFT potentials and the

Jülich meson-exchange interactions.

EFT LO EFT NLO Jülich ’04 [16] Jülich ’94 [20]

Λ [MeV] 550 · · · 700 500 · · · 650

UΛ(0) −38.0 · · · −34.4 −28.2 · · · −22.4 −51.2 −29.8

UΣ(0) 28.0 · · · 11.1 17.3 · · · 11.9 −22.2 −71.4

The predicted Σ s.p. potential is repulsive (at NLO and also at LO), see Table 1. As already

mentioned in the Introduction, this result is in agreement with evidence from the analysis of level

shifts and widths of Σ− atoms and from recently measured (π−,K+) inclusive spectra related to

Σ−-formation in heavy nuclei [22, 23]. We could achieve a repulsive Σ s. p. potential because
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the interaction in the 3S1 partial wave of the Σ+p channel (which provides the dominant contribu-

tion, cf. Table 4 in [3]) is repulsive, for the LO potential but also for the NLO interaction. Note,

however, that with regard to the NLO interaction it had turned out that, in principle, the available

Y N scattering data can be fitted equally well with an attractive or a repulsive interaction in the 3S1

partial wave of the I = 3/2 ΣN channel [2]. The repulsive solution was adopted for the reasons just

discussed, but also in accordance with results from a first lattice QCD calculation [24]. As exem-

plified by the predictions of the Jülich meson-exchange models, typically such phenomenological

potentials fail to produce a repulsive Σ-nuclear potential. For exceptions see Ref. [7].

Results for the Scheerbaum factor SΛ that characterizes the strength of the Λ-nuclear spin-

orbit potential in nuclear matter, see Eq. (4.5), are provided in Table 2. While the results at LO are

pure predictions, those at NLO depend on a LEC that generates 1P1–3P1 transitions in the coupled

(I = 1/2) ΛN–ΣN system, as already mentioned in the Introduction. This LEC has been set to zero

in Ref. [2] because the Y N data alone do not allow to establish a value for it. However, as shown

in Ref. [3], it can be fixed by considering the Scheerbaum factor SΛ calculated from the G-matrix,

in conjunction with the constraint that the results for ΛN and ΣN scattering remain practically

unchanged.

Table 2: Partial-wave contributions to the Scheerbaum factor SΛ (in MeV fm5) at kF = 1.35 fm−1 for the

LO and NLO interactions for various cutoffs. NLO†(650) are results based on the interaction as published

in Ref. [2], i.e. without an antisymmetric spin-orbit force.

3P0
3D1

3P1
1P1↔3P1

3P2
3D2

3D3 Total

LO (550) 8.7 −0.2 −5.2 0.0 −0.9 0.4 −0.1 2.7

LO (600) 9.3 −0.2 −5.0 0.0 −1.1 0.4 −0.1 3.3

LO (650) 9.8 −0.2 −4.8 0.0 −1.2 0.4 −0.1 3.8

LO (700) 10.4 −0.2 −4.7 0.0 −1.4 0.4 −0.1 4.4

NLO (500) −5.9 −0.6 −3.3 8.9 −3.4 0.4 0.2 −3.7

NLO (550) −5.2 −0.6 −2.8 7.5 −3.1 0.4 0.2 −3.7

NLO (600) −4.8 −0.6 −2.4 6.6 −3.0 0.4 0.2 −3.7

NLO (650) −4.4 −0.6 −2.0 5.8 −3.0 0.4 0.2 −3.7

NLO†(650) [2] −4.4 −0.6 −4.6 0.0 −3.0 0.4 0.2 −12.0

Jülich ’04 [16] 4.0 0.5 −1.3 4.6 −9.2 0.6 −1.0 −1.7

Jülich ’94 [20] −3.3 1.2 −3.8 8.4 −2.5 0.6 −1.3 −0.4

As guideline for the strength of the Λ-nucleus spin-orbit potential “empirical” values from

studies of the splitting of the 5/2 and 3/2 states of 9
ΛBe by Hiyama et al. [25] and Fujiwara et

al. [26] are used [3]. The results of those authors suggest that values for SΛ in the order of −4.6

to −3.0 MeV fm5 would be needed to reproduce the experimentally observed small level splitting

[27]. Values of around −3.2 and −4.1 MeV fm5 are advocated in Refs. [28] and [29], respectively.

Since the precise value required for the Λ s.p. spin-orbit strength can only be pinned down reliably

via a dedicated calculation of finite hypernuclei based on our EFT interactions, we decided to aim
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at an exemplary result of −3.7 MeV fm5. As one can see in Table 2, this goal can be achieved. For

comparison we provide also a prediction based on the original Y N of Ref. [2], where there is no

antisymmetric spin-orbit force, cf. NLO†(650) in Table 2. In this case SΛ is roughly a factor four

larger and, thus, not in line with the “empirical” information anymore.

5. Summary

We presented results for the in-medium properties of a hyperon-nucleon (Y N) interaction de-

rived within chiral effective field theory (EFT) and fitted to ΛN and ΣN scattering data. The single-

particle potentials for the Λ and Σ hyperons in nuclear matter were evaluated in a conventional

G-matrix calculation, and the Scheerbaum factor associated with the Λ-nucleus spin-orbit interac-

tion was computed.

The predictions for the Λ single-particle potential are found to be in good qualitative agreement

with the empirical values inferred from hypernuclear data. A depth of about −25 MeV is predicted

by the NLO interaction and of about −36 MeV by the LO potential. The Σ-nuclear potential

turns out to be repulsive, in agreement with phenomenological information, with values around

15–20 MeV.

Empirical information suggests that the Λ-nucleus spin-orbit interaction should be rather weak.

Therefore, we investigated also the spin-orbit interaction and, in particular, the role of the antisym-

metric spin-orbit force in the Y N system. In chiral EFT a contact term representing an antisym-

metric spin-orbit force arises at NLO which induces 1P1–3P1 transitions in the coupled (I = 1/2)

ΛN–ΣN system. However, the low-energy constant associated with the contact term can not be

pinned down by a fit to the existing ΛN and ΣN scattering data. Interestingly, it turned out that

its value can be indeed fixed from investigating the properties of the Λ hyperon in nuclear matter

and, specifically, this low-energy constant can be utilized to achieve a weak Λ-nuclear spin-orbit

potential.
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