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1. Introduction

The advent of interactions derived in the framework of dipexturbation theory (see e.g. [1]
and references therein quoted) opened a new and systenagtio imvestigate low and high energy
processes in nuclear physics. The big advantage of usifigsethod lies in the fact that two-body
as well as many-body forces can be calculated order by omerding to a well defined scheme.
This systematic procedure is particularly useful for nanie systems where the importance of the
three-nucleon force (TNF) is a well established features ihdeed well known that high precision
nucleon-nucleon (NN) potentials, fitting NN scatteringadap to energy of 350 MeV, with g2 per
datum next to 1, underestimate the experimental bindinggéseofH, 2He by about 1 MeV and
that of*He by about 4 MeV [2]. This missing binding energy can be antedi for by introducing
a TNF into the nuclear Hamiltonian [2].

In a previous paper [3], we have investigated whether usiagéme interactions at two- and
three-body level, it was possible to concurrently repr@dpooperties of finite light nuclei and
nuclear matter. Fixing the parameters of the TNF to simelasly describe théH, 3He and*He
binding energies and the neutron-deuteron (n-d) doublgtesing length [4], we found that none
of the considered interactions was able to reproduce a gatodasion point of symmetric nuclear
matter. In [3] we used the Argonnel8 NN potential [5] supmated with two different TNFs. In
the first case we employed various parametrizations of teedn+Melbourne TNF [6], while in the
second case, we used the local version of the chiral N2LO INF Thereafter N2LOL) [8]. In the
present work, we consider an interaction fully based oratpierturbation theory both for the two-
and three- nucleon sectors. We use indeed the chiral N3L®&I®potential in conjunction with
the N2LOL three-nucleon interaction. We note that while K¢ potential is calculated at order
N3LO of chiral perturbation expansion, the three-nuclepa i3 calculated at order N2LO. Chiral
TNFs have also been calculated at order N3LO [10]. Howevegéins that their contribution is
negligible [11]. Moreover no additional low energy constappears at this order. Subleading
contributions to the TNF come out at order N4LO [12]; theintridbution seems to be potentially
important. In this work we limit our study considering TNFaaulated at order N2LO.

The paper is organized as follows: in the first section weesthe parameters of the N2LOL
three-nucleon force and the determination of the low eneagstants; in the second section we
briefly discuss how to include a TNF in the Brueckner-Harffeek (BHF) approach; finally the
third section is devoted to show the results of our calcotetiand to outline the main conclusions
of the present study.

2. TheN2LOL three nucleon force

2n

Following Ref. [8], for the N2LOL potential we have adoptedud off of the formFa = e
beingq the exchanged momentum. We empioy: 2 and/\A = 500 MeV. We have then considered
five parametrizations of the N2LOL three-nucleon force éagier N2LOL1, N2LOL2, N2LOL3,
N2LOL4, N2LOL5). For all the five parametrizations, we hawpkthe values of the parameters
C1, Cz andcy as the original ones determined in Ref. [9]. These valuessm@ted in the caption of
Tab. 1. The values of the low energy constamtandcp are reported in Tab. 1. The parametrization
N2LOL1, is the original one proposed in Ref. [8], whexe andcp were fitted to reproduce the
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binding energies ofH and*He in a no-core shell model calculation. In Ref. [13], fixifwet
range ofcp between—3 and 3, the parameteg was determined fitting the binding energies’sif
and3He. In this way the authors of Ref. [13] obtained two cureeécp) fulfilling the previous
constraints. As the two curves turned out to be very closeattthors of Ref. [13] performed an
average between them. Finally, for each set of paramétersp ), the Gamow-Teller (GT) matrix
element of TritiumB-decay was calculated and, using the corresponding exestahvalue and
its error-bars, the minima and a maxima valuesdgrand cg satisfying this requirement were
determined. In the parametrizations N2LOL2 and N2LOL3, waeehadopted the minima and
the maxima values allowed fap and cg according to the construction described above. The
parametrization N2LOL4, taken from Ref. [14], was obtainedhe same way as the N2LOL2
and N2LOL3 ones but allowing that the GT matrix element todmaduced with a slight larger
uncertainty (however less than 1%). The last parametoizdtiat we have considered, namely the
N2LOLS5, has been obtained fixing the couptg ,(cg) on the trajectory reproducing the binding
energies ofH and®He and requiring to get the best saturation density of symowiclear matter.

3. Inclusion of three-nucleon forcesin the Brueckner-Hartree-Fock approach

As widely discuss in literature [15, 16, 17, 18], three-rael forces cannot be included in
the BHF formalism [19, 20] in their original form. This taskowld require the solution of a
three-body Bethe-Faddeev equation in the nuclear mediuncarrently this procedure cannot
be accomplished. To overcome this problem, an effectivesitiedependent two-body force is
built starting from the original three-body one by averaggaver the coordinates (spatial, spin and
isospin) of one of the nucleons. The effective NN force du¢htgeneral three-nucleon force
W(1,2,3) can be written as [15, 21]:

W(L,2) = % [ dxe Y W(L.2.3) n(L.2.3)(1- P~ P, (3.1)
cye

where we have definefldxs = Tr(z, g,) [ drs. In the previous expressian(1,2,3) is the density
distribution of the nucleon 3 in relation to the nucleon T atind nucleon 2 at,. The function
n(1,2,3) represents the effect of the NN correlations and will sugprihe contributions from
the short-range part &(1,2,3). As in Ref. [3] we assume that this density distribution can b
factorized as

n(lv 2,3)=p 92(17 3) 92(27 3), (3.2)

wherep is the nucleon densityg(1,3) andg(2,3) are the correlation functions between the nu-
cleons(1,3) and(2,3) respectively. The latter quantities can be writtergéls3) = 1—n(1,3),
wheren (1,3) is the so-called defect function (and similarly ff2, 3) ). To simplify the numerical
calculations and following [15, 3], in the present work we agntral correlation functiorgi, j)
independent on spin and isospin. Moreover, it has been sfidwi6, 17] that this central correla-
tion functions, in which are included the main contributaf thelS, and®S; channels, are weakly
dependent on the density, and can be approximated by a lteasiep functiord(r; —r¢), with

ro = 0.6 fmin all the considered density range. Findyare the spin, isospin and space exchange
operators between nucleoand j.
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Cp Ce

N2LOL1 | 1.00 -0.029
N2LOL2 | -0.20 -0.208
N2LOL3 | -0.04 -0.184
N2LOL4 | 0.00 -0.18
N2LOL5 | 0.25 -0.135

Table 1: Five different parametrizations of the N2LOL three-bodycwith A = 500 MeV. The values
¢ = —0.00081 MeV1, cz = —0.0032 MeV%, ¢ = —0.0054 MeV ! have been kept fix in all the five
cases. See text for details.

po (fm=3) E/A (MeV) Egm (MeV) L (MeV)
N2LOL1 | 0.185 -15.48 35.5 58.5
N2LOL2 0.15 -11.23 29.0 44.1
N2LOL3 0.15 -11.96 29.3 45.0
N2LOL4 0.15 -12.16 29.4 45.2
N2LOL5 0.16 -13.04 31.3 48.7
N3LO 0.41 -24.25 55.0 108.2

Table 2: Properties of nuclear matter at saturation point/foe 500 MeV. In the five columns are shown:
parametrization of the N2LOL three-body force, saturatiensity, corresponding value of energy per par-
ticle E/A, symmetry energ¥symand slope. of the symmetry energy. Last line refer to the calculation in
which just the N3LO NN force has been used. See text for masglge

A different average procedure, with respect to the one diseaiabove, has been performed in
Ref. [22], where an in medium effective NN potential was dedi from the N2LO three-nucleon
force. In [22] just the on-shell contributions have beeredeined while the off-shell counterparts
have been obtained by extrapolation.

We want to stress that the presence of the exchange operatbesaverage, neglected in our
previous work [3], play a very important role. In this way whetain a fully density dependent
antisymmetric two-nucleon force and we take into accourlahternal and external permutation
of the TNF. In addition, through this procedure, all opersiiavolved in the TNF contribute to the
effective density dependent potential. The resultingagiffe density dependent potential contains
in particular some purely repulsive contributions thatrarssing when neglecting tt&; exchange
operators. Such repulsion is needed to contrast the stittragteon provided at two-body level by
the N3LO potential as we will show in next section.

4. Results and discussions

We now present the results of our calculations of the enemgypprticle of symmetric nu-
clear matter and pure neutron matter using N3LO NN potestigplemented with the N2LOL
three-body force. In Fig. 1 we show the energy per particlpuré neutron matter (left panel) and
symmetric nuclear matter (right panel) using the cutoff 500 MeV. The dotted lines in both plots
refer to the calculation performed employing the N3LO pt&without any TNF. First we note
the huge contribution provided by the TNF to the energy petigha of both symmetric nuclear
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Figure 1: Pure neutron matter (left panel) and symmetric nuclearendtight panel) versus nucleonic
density for the five parametrizations of the N2LOL model. &e¢ for details.

matter and pure neutron matter. In the case of symmetri@auahatter the saturation point moves
indeed from %41 fm~2 to values between.06 fm—23 and 0185 fm3, depending on the specific
model used for the TNF (see Tab. 1). More specifically, thampatrization N2LOL1 predicts a rea-
sonable saturation point for symmetric nuclear matter a&resitly of 0185 fm 2 and an energy per
nucleon equal te-15.48 MeV. Referring again to the N2LOL1 model, the shift intnodd by the
TNF to the energy per nucleon at the empirical saturationtgmi= 0.16 fm 3 is AE = 2.73 MeV
for symmetric nuclear matter adxE = 4.84 MeV for pure neutron matter. On the other hand the
parametrizations N2LOL2, N2LOL3 and N2LOL4, all produceamd saturation density of. 06
fm~2, but the corresponding energy per nucleon is underestitmateging between-11.23 MeV
and—12.16 MeV (see Tab. 1). The curves for the energy per nucleon & peutron matter are
very similar in all the density range considered. We noté ttie parametrization N2LOL5 is con-
structed to reproduce tifél and3He binding energies and the best saturation density of syriame
nuclear matter. However, we want again to remark that inddis& the GT matrix element is not re-
produced. Itis apparent that none of the present interactian fulfill the requirement to reproduce
simultaneously théH, 3He and*He binding energies, the GT matrix element and the saturatio
point of symmetric nuclear matter. However the parametdraN2LOL1, which has the important
property to reproducéH and3He binding energies, provides also a reasonable saturation for
nuclear matter. Such achievements represent a big impewenh our previous calculations [3].

In the case of asymmetric nuclear matter with neutron demsit proton densityp,, total
nucleon density = p, + pp and asymmetry parametgr= (p, — pp)/p the energy per nucleon
can be accurately reproduced using the so called paralgiodmation [23]

= (0.5) = 5 (0.0)+ Eynlp)B?. @1)
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Figure 2: Symmetry energy versus nucleonic density for the five patdragions of the N2LOL one con-
sidered. See text for details.

whereEsyn{p) is the nuclear symmetry energy. Thus the symmetry energpeaalculated as the
difference between the energy per particle of pure neutrattem3 = 1) and symmetric nuclear
matter 8 = 0). The nuclear symmetry calculated with this prescripf@rvarious parametrizations
of the N2LOL three-nucleon force is plotted in Fig. 2.

To compare our results with the value of the symmetry enexgsaeted from various nu-
clear experimental data [24, 25], we report in Tab. 2 the sgimyrenergy and the so called slope

parameter

L — 3pp 2ErlP) ( .

op  Im

at the calculated saturation density (second column in Zgafor the different TNF models con-
sidered in this work. As we can see (Tab. 2) our calcul&@ggandL are in very good agreement
with the values extracted from experimental data [Z];po) = 29.0 — 327 MeV, andL = 40.5 -
61.9 MeV. This agreement is lost when the TNF is not included endélculations (see the last row
in Tab. 2). Notice that the value of incompressibiliy of symmetric nuclear matter, at the calcu-
lated saturation density, is generally quite low. It rangetveenKy = 150-170 MeV, depending
on the TNF model.

Let us now confront our results with those of similar caltiolas present in literature based on
chiral nuclear interactions. The authors of Ref. [14] perfed nuclear matter calculations using
the BHF approach adopting the effective density dependéhfdxce derived in Ref. [22]. These
authors found results in good agreement with ours both folean matter and pure neutron matter.
Several nuclear matter calculations based on chiral ictierss have been performed using other
many-body techniques. In Ref. [26], using Megw-approach and the similarity renormalization
group (SRG), it was shown that for a suitable choice of thef€uty owk it was possible to repro-

(4.2)
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duce a good saturation point of symmetric nuclear mattepikgefor the parameters of the TNF
the values fixed in few-body calculations. In Ref. [27], gsthe self-consistent Green’s functions
method, it has been found that the saturation point of symicneticlear matter is strongly im-

proved with the help of the N2LOL three-nucleon force alifioualso in this case, the saturation
curve results underestimated.

5. Conclusions

We have performed several BHF calculations of symmetrideananatter and pure neutron
matter considering the N3LO NN potential plus the N2LOL &hneicleon interaction. The last one
has been reduced to an effective density dependent two{bocky averaging over the coordinates
of one of the nucleons. We want to stress that the paramédténg d NF fitted in calculations of
light nuclei have been kept fixed in our nuclear matter cakoois. We found that although it was
not possible to reproduce the binding energytéf °He, the GT matrix element and the saturation
point of symmetric nuclear matter simultaneously, onepatazation of the N2LOL three nucleon
force, namely the N2LOL1, shows a reasonable saturationt pbisymmetric nuclear matter as
well as values oEsymandL in good agreement with the experimental ones. These ergiogra
results spur us towards new combined investigations in &wl-many-body nuclear physics using
interactions derived in the framework of chiral perturbattheory.
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