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a0(980) as a companion pole of a0(1450)
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Light scalar hadrons are often understood as dynamically generated resonances. These arise as
‘companion poles’ in the propagators of qq̄ seed states when accounting for meson-loop con-
tributions to the self-energies of the latter. Following this idea, we demonstrate that for the
scalar–isovector state a0(1450) the full one-loop propagator has two poles: a pole of the seed
state a0(1450) and a companion pole corresponding to a0(980). The positions of these poles are
studied by varying the relative coupling strength between the non-derivative and derivative parts
of the interactions.
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1. Introduction

Intense research during the past decades has demonstrated that the majority of mesons can
be understood as being predominantly qq̄ states [1]. However, various unconventional mesonic
states such as glueballs, hybrids, and four-quark states are expected [2]. Along this line, a concept
of ‘dynamically generated’ states was put forward in Refs. [3, 4, 5, 6]. Allthough there is not a
generally accepted definition of dynamical generation [7], other versions of this idea can also be
found in Refs. [8, 9, 10, 11].

The general idea is summarized in the following: Consider, for instance, a single seed state,
e.g. a qq̄ meson with certain quantum numbers. This state interacts with other mesons, giving rise
to loop contributions in the corresponding self-energy and dressing its own full propagator. These
contributions shift the corresponding pole of the seed state which moves away from the real axis
and follows a certain trajectory in the appropriate unphysical Riemann sheet [12]. Moreover, new
poles may appear. The latter are sometimes denoted as companion poles. If one of them happens
to be situated sufficiently close to the physical region, i.e., the real axis, it could correspond to a
dynamically generated resonance. As a consequence, we are left with two resonances emerging
from a single seed state. In this work, we aim to discuss this mechanism in the context of the
resonance a0(980).

From what was found for example in Refs. [13, 14, 15, 16] the scalar resonances f0(1370),
f0(1500), K∗0 (1430), and a0(1450) seem to be predominantly ordinary qq̄ states. On the other hand,
the light scalar states f0(500), f0(980), K∗0 (800), and a0(980) are (most likely) predominantly
something different (see e.g. Refs. [10, 14, 17, 18, 19, 20, 21, 22] and refs. therein). In fact, we
have proven in a recent publication [23] that for the heavy scalar–isovector seed state a0(1450),
the coupling of this state to πη , KK̄, and πη ′ is capable to dynamically generate the light state
a0(980). We will shortly outline the hadronic model that was applied there, which includes meson
interactions via derivative and non-derivative couplings. We will then study the dependence of
the pole structure with respect to the the relative coupling strength between the non-derivative and
derivative parts of the interactions.

These proceedings are based on Ref. [23]. Our units are h̄ = c = 1. The metric tensor is
ηµν = diag(+,−,−,−).

2. Formalism

Following the earlier work of Ref. [3], some seminal studies investigated the scalar sector in
a unitarized quark model by including meson-loop contributions [5, 6]. They showed that meson-
loop effects may serve to explain the existence of the light scalar mesons. As can be seen from
our discussion in Ref. [23], the situation is however somewhat inconclusive regarding the number
and the location of propagator poles and how to assign them to physical states. After reviewing the
general approach, we present our way to model the scalar–isovector sector.

The main goal is the determination of the inverse propagator of a resonance after applying a
Dyson resummation of loop contributions to the self-energy:

∆
−1(s) = s−m2

0−Π(s) . (2.1)
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Here, m0 is the bare mass of the seed state and Π(s) = ∑i Πi(s) is the self-energy. The sum runs
over the loops emerging from the coupling of the resonance to various mesons. The real part of
Π(s) on the real axis is related to the imaginary part by the dispersion relation

ReΠ(s) =
1
π
−
∫

ds′
−ImΠ(s′)

s− s′
. (2.2)

The actual modeling occurs in the particular expression of the imaginary part of Πi(s). According
to the optical theorem, it corresponds to the partial decay width of the resonance into mesons in
channel i, see Sec. 3. Furthermore, a form factor is usually introduced,

Fi(s) = exp[−k2
i (s)/Λ

2] , (2.3)

where Λ is a cutoff parameter and ki(s) is the absolute value of the three-momentum of the decay
particles in the rest frame of the resonance:

ki(s) =
1

2
√

s

√
s2 +(m2

i1−m2
i2)

2−2(m2
i1 +m2

i2)s . (2.4)

Here, mi1,mi2 are the masses of the decay products, i.e., in our case the pseudoscalar mesons. The
function Fi(s) guarantees that the imaginary part of Π(s) vanishes sufficiently fast for s→ ∞.

The self-energy on the unphysical sheet(s), Πc(s), is obtained by analytic continuation:

DiscΠ(s) = 2i lim
ε→0+

∑
i

ImΠi(s+ iε) , s ∈ R , (2.5)

Π
c(s) = Π(s)+DiscΠ(s) . (2.6)

In this work only the three sheets nearest to the physical region will be regarded (in the standard
notation πη ↔II, KK̄↔III, πη ′↔VI).

3. A simple effective model with derivative interactions

3.1 Lessons from previous works

A first attempt to incorporate the mentioned mechanism of dynamical generation for the scalar
states with I = 1 in a consistent scheme [15, 16, 24] was presented in Refs. [25, 26]. There,
the seed state was assigned to be (in the mass region of) the a0(1450), and the s-dependence of
the amplitudes was completely neglected (apart from the cutoff dependence), yielding a width of
the seed state which is too small. Moreover, no additional pole for the a0(980) was dynamically
generated.

It was then demonstrated in Ref. [23] that it is however possible to obtain a narrow resonance
with mass around 1 GeV, the pole coordinates of which fit quite well with those of the physical
a0(980) resonance, and simultaneously obtain a pole for the seed state in agreement with that for
the a0(1450) [1]. An important requirement seems to be the inclusion of s-dependent amplitudes
and derivative interaction terms in the Lagrangian, respectively.
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3.2 Effective model with both non-derivative and derivative interactions

We now consider the effective model for the isovector states from Ref. [23] which contains
non-derivative and derivative interactions. The Lagrangian is given by the sum of the following
terms:

La0ηπ = A1a0
0ηπ

0 +B1a0
0∂µη∂

µ
π

0 , (3.1)

La0η ′π = A2a0
0η
′
π

0 +B2a0
0∂µη

′
∂

µ
π

0 ,

La0KK̄ = A3a0
0(K

0K̄0−K−K+)+B3a0
0(∂µK0

∂
µ K̄0−∂µK−∂

µK+) .

Then, Eq. (3.1) gives rise to the following s-dependent amplitudes:

M e f f
i (s) =

[
Ai−

1
2

Bi
(
s−m2

i1−m2
i2
)]

Fi(s) , (3.2)

where we have already included a regularization function Fi(s) as defined in Sec. 2.
The imaginary part of the one-loop self-energy1 is computed by using the optical theorem,

ImΠi(s) =−
√

sΓ
tree
i (s) =− ki(s)

8π
√

s
|–iM e f f

i (s)|2Θ(s− sth,i) , (3.3)

and the real part comes from the dispersion relation in Eq. (2.2). The step function ensures that the
decay channel i contributes only when the squared energy of the resonance exceeds the threshold
value sth,i. Notice that from a careful analysis we showed the necessity to introduce subtractions
that are not visible here – for a detailed presentation of this issue see Ref. [23].

Our fitting procedure was aimed to find a set of parameters {m0, Λ} for which (i) two poles
appropriate for the I = 1 resonances a0(980) and a0(1450) can be found, i.e., poles that lie on
the second and sixth sheet, respectively, and (ii) the six coupling constants Ai, Bi (i = 1,2,3)
produce branching ratios of a0(1450) in good agreement with the central values of the experimental
branching ratios [1]. We obtained [23]:

m0 = 1.15 GeV , Λ = 0.6 GeV , (3.4)

A1 = 2.52 GeV , B1 =−8.07 GeV−1 , (3.5)

A2 = 9.27 GeV , B2 = 9.25 GeV−1 ,

A3 =−6.56 GeV , B3 =−1.54 GeV−1 .

By using the tree-level decay widths obtained from the optical theorem (3.3) at the peak value of
the spectral function above 1 GeV, mpeak

a0(1450) = 1.419 GeV:

Γtree
a0(1450)→η ′π

Γtree
a0(1450)→ηπ

' 0.44 ,
Γtree

a0(1450)→KK̄

Γtree
a0(1450)→ηπ

' 0.96 . (3.6)

The pole corresponding to the a0(980) has coordinates2

√
spole

∣∣
a0(980) = (0.970− i0.045) GeV , (3.7)

1The one-loop approximation for the self-energy is quite reliable, since vertex corrections can be shown to have a
negligible effect [27].

2We apply the usual parameterization for propagator poles, spole = m2
pole− impoleΓpole .
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i.e., we find the a0(980) to have a mass of ma0(980)
pole = 0.969 GeV and a width of Γ

a0(980)
pole = 0.090

GeV. For the resonance above 1 GeV we get

√
spole

∣∣
a0(1450) = (1.456− i0.134) GeV , (3.8)

or ma0(1450)
pole = 1.450 GeV and Γ

a0(1450)
pole = 0.270 GeV.

4. Results

In the following, we do something different with respect to Ref. [23]. We introduce a di-
mensionless parameter δ ∈ [0,1] and replace the derivative coupling constants in Eq. (3.1) by
B2

i → δB2
i . In consequence, for δ = 0 the self-energy contains only non-derivative interactions,

while for δ = 1.0 we reproduce the poles stated before. Increasing δ from zero to one, the deriva-
tive interaction is successively increased and we can monitor in a controlled manner how the pole
structure changes. The result can be seen in Fig. 1.

It turns out that it is possible to obtain two poles even for vanishing δ where the derivative
interactions give no contribution. In this case the real part of the corresponding pole for a0(980)
(second sheet) is maybe too small, but the imaginary part is definitely too small. On the other hand,
the latter of the pole for a0(1450) (sixth sheet) is obviously too large. Driving δ → 1.0, both poles
reach their final positions in different ways: The pole on the second sheet gains changes in both its
real and imaginary parts; both are increased. Concerning the pole on the sixth sheet, the real and
imaginary parts decrease, but the latter is more affected by a change of δ . For the spectral function
see Ref. [23]
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Figure 1: Pole structure of our effective model in dependence of δ . Black dots indicate the position of the
poles for δ = 1.0. The roman number indicates on which sheet the respective pole can be found.

5. Conclusions

Our results demonstrate that it is in fact possible to correctly describe the resonances a0(980)
and a0(1450) in a unique framework, where originally only a single qq̄ seed state is present. The
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starting point is an effective Lagrangian that includes both derivative and non-derivative interaction
terms, see Eq. (3.1). The form of the Lagrangian is inspired by the one of the extended Linear Sigma
Model (eLSM). From our variation of the overall coupling strength δ we furthermore showed that
both terms seem to be equally important.

The presented mechanism of dynamical generation (of light scalar mesons) may be extended
in two directions: (i) One could study the isodoublet, i.e., by describing the resonances K∗0 (800)
and K∗0 (1430) in a similar unified framework (this we already started, see Ref. [28]). The pole of
K∗0 (800) is not yet very well known and there is need of improved analyses. (ii) Furthermore, the
scalar–isoscalar sector could be investigated, where the resonances f0(500) and f0(980) should be
dynamically generated, while f0(1370), f0(1500), and f0(1710) would be predominantly a non-
strange quarkonium, a strange quarkonium, and a scalar glueball, respectively.

Another interesting project is the study of dynamical generation in the framework of reso-
nances in the charmonium sector [29], see for example Ref. [30] and refs. therein. Namely, a
whole class of mesons, called X , Y , and Z states, has been experimentally discovered but is so far
not fully understood [31, 32]. As shown in Ref. [33] for the case of X(3872), some of the X and Y
states could emerge as companion poles of qq̄ states.
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