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Despite the numerous successful applications of lattice QCD in nuclear and particle theory, fun-
damental algorithmic challenges remain. Among those, relevant for numerical studies of QCD
on a space-time torus, is topological freezing–a form of critical slowing down, which becomes
particularly acute for lattice spacings less than 0.05 fm. In these proceedings, I highlight several
recently proposed simulation strategies for ameliorating the problem of topological freezing, and
discuss both their advantages and disadvantages. Then, I turn focus toward potential strategies
for addressing critical slowing down in a more general context.
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1. Introduction

One of the goals of any numerical study is to provide reliable determinations of statistical
and systematic uncertainties on stochastically estimated quantities. Control over both kinds of un-
certainties require, in part, an understanding of correlations in the generated statistical ensembles.
Such correlations arise as a consequence of the sequential nature of Markov Chain Monte Carlo
(MCMC) simulations, as illustrated in Fig. 1. MCMC techniques are heavily used for numerical
studies in lattice field theory, and the associated correlations are highly dependent on the time scales
of the Markov process.
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Figure 1: Sampling of configurations (represented by
boxes, labeled by si for i = 0,1,2, . . .) in a configura-
tion space (shaded region) by an MCMC algorithm.

In general, coarse configurations gener-
ated by an MCMC algorithm will become
decorrelated faster than fine configurations.
The quality of an updating algorithm, how-
ever, is often determined by how well the
decorrelation time for configuration genera-
tion scales with the inverse lattice spacing–
a strong scaling behavior being indicative
of critical slowing down. Observables (O)
serve as probes for estimating the decorrela-
tion time of an algorithm. In particular, the
integrated autocorrelation time of an observ-
able provides a lower bound on the decorrelation time, and typically exhibits a power-law scaling
behavior of the form

τint(O)∼
(

1
a

)zint(O)

, (1.1)

where a is the lattice spacing, and zint(O) is bounded by the dynamical exponent, which is charac-
teristic of the algorithm. Note that the integrated autocorrelation time depends on the observable in
question, and in particular on how strongly the observable couples to the various modes of evolu-
tion. An explicit example of this dependence (for a variety of observables) is provided in Fig. 2 for
pure SU(3) gauge theory using a heat bath (HB) algorithm. The local nature of MCMC updating
algorithms often (although not always; see e.g., [1]) imply zint(O)∼ 2 for local observables. This
can be understood in terms of the diffusive character of the algorithm, although some quantities
may have a far worse scaling behavior, as also shown in the figure.

In perhaps the most severe of forms, critical slowing down can result in the freezing of topo-
logical charge for gauge theories defined on a periodic lattice. This can be understood by noting
that in the continuum, the gauge configuration space is separated into distinct topological sectors
labeled by a quantized charge Q∈Z. On the lattice, however, the configuration space is connected,
albeit with large action barriers at non-integer Q. Intuitively this is due to the fact that changes
in topology require introducing discontinuities in the gauge configuration, which result in a large
Euclidean action. The free energy at a fixed topological charge is given by

f (Q) =− 1
V

log〈δ (Q−Q(s))〉 , (1.2)
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where 〈. . .〉 is an ensemble average over decorrelated configurations s. An illustration of the free
energy is provided in Fig. 3 (left); note that the height of the free-energy barriers depends on the
choice of action, and diverges as the continuum limit is approached. A change in topology during an
MCMC simulation requires tunneling through barriers, and the likelihood for such occurrences is
therefore expected to be exponentially suppressed, particularly in the regime of fine lattice spacing.
At ultra-fine lattice spacing, the time scale for such changes–controlled by the barrier height–can
exceed the total feasible simulation time, and thus results in topological freezing. This phenomena
becomes particularly acute when a. 0.5fm, and can lead to systematic errors, such as power-law
finite volume corrections to masses and other observables [3] 1.
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● χ(t0* )
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Figure 2: Lattice spacing dependence of the inte-
grated autocorrelation time for pure SU(3) gauge the-
ory on a four-dimensional periodic lattice. Simula-
tions were performed using the HB algorithm at a
fixed physical volume (see [2] for details).

Since the previous Lattice Conference,
there have been a number of interesting and
promising new proposals for addressing the
challenge of topological freezing from the
standpoint of gauge generation. These ideas
fall into two classes: those that approach
the problem from the infrared–by exploit-
ing the fact that a different choice of bound-
ary conditions can influence the connectiv-
ity of field space [11] (as motivated by [12]),
and those that approach the problem from
the ultra-violet–by exploiting the ambiguity
in defining topological charge at finite lat-
tice spacing [2, 13, 14]. In the next sections,
I briefly review these strategies, as well as
highlight some of their advantages and draw-
backs (also see [15, 16, 17] for further dis-
cussion of these approaches, as presented at this conference). It should be mentioned that a number
of strategies have been discussed at this conference which address topological freezing from an
analysis standpoint rather from the standpoint of gauge generation [18, 19]. Although these are
very interesting and import works, they will not be discussed here in any detail.

2. Non-orientable manifolds

A key insight which motivates the use of non-orientable manifolds to solve topological freez-
ing is the observation that the topological character of field space depends not only on the gauge
group but also the nature of the space-time manifold. With the use of open boundary condi-
tions [12], for example, topological charge is no longer quantized and free-energy barriers between
the different topological sectors are absent. Physically, changes in topology can occur when topo-

1It should be noted that the volume dependence of physical observables can be described by analytic formulas
(see, e.g., [4, 5] for extensions of the results obtained in [3]), and with sufficient data at multiple volumes and multiple
fixed topological charge sectors, a direct determination of physical quantities at vanishing theta vacuum is possible.
Demonstrations of this strategy are provided in [6]. Several other fixed topology approaches for measuring topological
susceptibility exist (see, e.g., [7, 8]), and have been shown to work well under appropriate conditions [9, 10].
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Figure 3: Left: Schematic plot of the free energy as a function of the topological charge for various lattice
spacings; as the lattice spacing decreases, the height of the potential barriers diverge. Right: Schematic plot
of the biased effective potential (green) for topological charge at various stages of a simulation, labeled by
times τi (i = 1,2,3).

logical charge flows in and out of the system at the open boundaries. Although the use of open
boundary conditions resolves the problem of topological freezing and have been used successfully
in practical applications (see, e.g., [20]), their use comes at the expense of explicitly breaking
translational symmetry. The systematic errors induced by open boundary conditions on observ-
ables (such as unphysical effects on correlation functions near the boundary), must therefore be
evaluated–and if necessary–accounted for (see, e.g., [21, 22, 23, 24] for further discussion).

The use of non-orientable manifolds introduces a twist to this strategy by employing P-periodic
boundary conditions (i.e., imposing a parity transformation on all fields at the boundary) as opposed
to open boundary conditions in one or more of the space-time directions [11, 15]. Consequences
of this choice are several-fold: 1) topological charge is no longer quantized, and 2) there is no
local breaking of translational invariance and thus translational symmetry breaking effects are sup-
pressed. Numerical studies of quenched QCD using an implementation of P-periodic boundary
conditions suggest that the scaling of τint(Q) with lattice spacing is comparable to that of open
boundary conditions, and thus offers an improvement compared to that of periodic boundary con-
ditions.

Despite the promising outlook, there are a number of disadvantages to using this approach. The
first is that although topology is no longer quantized, the classical field space remains broken into
two distinct sectors in the continuum. Consequently, sampling of these two sectors is susceptible
to freezing on the lattice at fine lattice spacing in much the same manner as the topological freezing
previously discussed. The second is that although implementation of fermions on such space-time
manifolds is possible, it is nonetheless somewhat nontrivial (see, e.g., [16] for further details).

3. Metadynamics

The strategy taken in metadynamics approaches is to introduce a Monte Carlo (MC) time de-
pendent potential bias to the action, which depends on one or more collective coordinate variables.
The potential bias is designed to disfavor revisiting past values of the collective coordinate dur-
ing the MCMC evolution. In the case of topological charge, such a bias–call it w(Q,τ)–has the
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effect of “filling” the potential wells as MC time progresses, thereby enabling eventual spill-over
into different topological sectors. An illustration of this idea is provided in Fig. 3 (right) for vari-
ous MC times during a hypothetical simulation. Note that at late times, the collective variable–in
this case topological charge–is eventually sampled uniformly.2 An important observation is that
after the potential wells have been filled and the sampling of sectors becomes uniform, the time
average of the potential bias provides a reliable estimator for the free energy. Specifically, one
finds f (Q) =−w̄(Q), where w̄(Q) = N−1

τ ∑τ w(Q,τ) and Nτ is the number of MC time samples at
equilibrium. Given a reliable estimator for f (Q), one may then reconstruct expectation values via
reweighting

〈O〉= 〈Oe−V w̄(Q)〉biased

〈e−V w̄(Q)〉biased
. (3.1)

A demonstration of the metadynamics approach to solving the exponential suppression of
topology change for CPN−1 models was provided in [14] (see also [17]), and the generalization
of this method to QCD is straightforward. There are several potential drawbacks to this strategy,
however:

1. The equilibration time required to fill the potential wells scales inversely with the barrier
height; this overhead can presumably be avoided with a good initial guess for the functional
form of the potential bias.

2. The fraction of sampled configurations contributing meaningfully to reweighting average is
expected to scale inversely with the barrier height ∆ f .

With regard to the latter, assuming ∆ f ∼ (1/a)h, the simulation cost (once equilibrated) effectively
scales as

cost ∝

(
1
a

)D+zint(O)+h

, (3.2)

where zint(O) is the dynamical exponent, determined from the autocorrelations of O in the metady-
namics simulation. The scaling of zint(O) was not determined in [14], but given the bias potential
for Q is flat, a reasonable guess might be zint(Q) ∼ 2. Although the exponential suppression of
topology change is eliminated, the approach nonetheless demands additional costs (due to the ad-
ditional exponent h), which should be accounted for when comparing with other methods.

4. Multiscale thermalization

Multiscale methods have played an important role in MC simulations. For example, they have
been used to improve the efficiency of Dirac operator inversion [25, 26, 27, 28], and reducing

2This assumes that a cutoff has been introduced on the magnitude of the topological charge. In practice, such a
cutoff must be introduced, and if chosen sufficiently large compared to the natural width of the topological charge distri-
bution (as governed by the chiral susceptibility and the physical spacetime volume) should induce negligible systematic
artifacts.
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statistical noise in estimates of correlation functions and other observables [29, 30, 31]. Implemen-
tation of a multiscale algorithm for gauge field updating in lattice QCD, however, remains an open
challenge despite some early progress for some simpler field theories [32, 33, 34, 35, 36, 37].

Recently, multiscale methods have been used to rapidly thermalize gauge field configurations
by combining the multigrid concepts of restriction (coarse-graining) and prolongation (refinement)
with the renormalization group [2, 13]. To better understand the strategy behind this approach, it is
helpful to first review some basic aspects of a MCMC simulation. A typical MC simulation begins
with an initial configuration s0 drawn from a known distribution P0 (e.g., an ordered or disordered
configuration). Subsequent configurations sτ (with τ > 0) are then generated by a Markov process,
defined by the transition matrix M , and constructed such that the desired (target) distribution P

is a stationary distribution (e.g., MP = P). The τ-th configuration generated in the Markov
Chain will be drawn from a distribution Pτ = M τP0. Under suitable assumptions (e.g., detailed
balance, ergodicity, etc.), the time evolution of the probability distribution can be expressed as

Pτ(s) = P(s)+ ∑
n≥1
〈s|χn〉〈χ̃n|P0〉e−τ/τn , (4.1)

where χn and χ̃n are the right and left eigenvectors of M [χn(s) ≡ 〈s|χn〉], and τn are the time
scales associated with the process (see, e.g., [38]). Note that the slowest time scale, τ1, dictates the
thermalization and decorrelation time scales of the algorithm.

Multiscale thermalization addresses the following question: can an initial distribution of con-
figurations P0 be efficiently produced such that the overlap 〈χ̃n|P0〉 vanishes for the slowest
modes of evolution? Doing so would enable more rapid thermalization, since the approach to the
equilibrium distribution P would be governed only by the faster times scales (e.g., τn, n > 1). This
idea is very much analogous to the common practice for extracting energies and overlap factors
from correlation functions. In the context of correlators, one can construct optimized sources from
a basis of operators by solving a generalize eigenvalue problem [39, 40, 41, 42]. Of those con-
structed, the sources with vanishing overlap onto the ground state enable reliable determinations of
excited state energies [39, 40, 41, 42]. In the context of multiscale thermalization, the initial distri-
bution is analogous to the sources, and the same orthogonality is desired. The means by which this
orthogonality is realized, however, is very different.

Before discussing the construction of initial distributions P0 which are orthogonal to the
slow modes of evolution, I first summarize some important general consequences of the proposed
construction, under the assumption that such orthogonality is achieved:

1. The time scale for reaching equilibrium will be shorter than the full autocorrelation time
scale (i.e., the longest time scale of the algorithm, τ1).

2. The relevant equilibration time scale, although less than τ1, is generally unknown and de-
pends on the quality of the projection; thus metrics for judging equilibration are necessary.

3. The ensemble obtained after thermalization need not be uncorrelated with the initial ensem-
ble (the degree of correlation with the initial ensemble is irrelevant for the purpose of deter-
mining estimates, providing the resulting distribution is equilibrated). Below, I will show an
explicit example where the thermalized ensemble is in fact highly correlated with the initial
ensemble, yet is properly distributed according to the desired fine action.

5
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4. The fluctuations of observables are characterized by higher moments of the observable distri-
bution; these moments are themselves observables, and as such, will equilibrate on the same
faster time scale.

Note that the degree to which each of these properties will hold depends entirely on one’s ability to
prepare an initial distribution of configurations which has vanishing overlap onto the slow modes
of evolution.

Now that the principle idea behind the rapid thermalization method has been outlined, I will
turn to the difficult task of preparing initial distributions that realize the desired properties estab-
lished above. A strategy for constructing initial distributions can be motivated and illustrated by a
simple toy example, the one-dimensional Ising model. The Hamiltonian for this model is given by

H =−J ∑
<i j>

sis j , (4.2)

where the sum is taken over nearest neighbor sites, and the spins associated with each site take the
possible values si = ±1. The partition function for the theory on an finite periodic lattice is given
by

Z = ∑
{si}

e−H = TrW N , W =

(
eJ e−J

e−J eJ

)
, (4.3)

where N is the total number of sites. Note that one can perform a real-space RG transformation
by integrating out the degrees of freedom associated with even sites, as illustrated in Fig. 4 (left).
Operationally, the coarse-graining procedure amounts to expressing the partition function as

Z = Tr(W 2)N/2 , W 2
∝

(
eR(J) e−R(J)

e−R(J) eR(J)

)
. (4.4)

where N is taken to be even and

R(J) =
1
2

logcosh(2J) . (4.5)

Note that for this particular system, a comparison of Eq. 4.3 and Eq. 4.4 reveals that the coarse-
grained Hamiltonian is exactly identical in form to the original Hamiltonian (up to an irrelevant
constant), however, the coupling constant undergoes the transformation J → R(J). Performing
such a transformation n times (assuming N is divisible by 2n) yields a coarse-grained Hamiltonian
of the form

Hn =−Jn ∑
<i j>

sis j , (4.6)

where Jn+1 = R(Jn) and J0 = J.
Next imagine an ensemble of coarse configurations which have been generated according

to the Boltzmann weight defined by a coarse Hamiltonian. One may ask whether it is possible
to “integrate in” the remaining degrees of freedom, thereby obtaining a fine ensemble properly
distributed according to the corresponding fine Hamiltonian. For this example, the procedure is

6
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level

n+ 1

n

coarse-grain

n+ 1

n

refinelevel

Figure 4: Left: Every other degree of freedom is integrated out, leaving behind a theory defined on a coarse
lattice. Right: Coarse degrees of freedom are mapped to a fine lattice, and the remaining fine degrees of
freedom are determined stochastically, using the probability measure e−βHn .

straight-forward. For every configuration within the coarse ensemble, one may first map the coarse
degrees of freedom onto the fine lattice, as illustrated in Fig. 4 (right). Subsequently, the remaining
degrees of freedom may be determined using a single HB update per site, using the fine Hamilto-
nian defined at the given refinement level. This strategy may be iterated repeatedly over multiple
levels of refinement along the renormalization group (RG) flow, starting from a solitary site, as
illustrated in Fig. 5. Doing so yields fully decorrelated and completely thermalized ensembles at
the finest level, and the computational cost is only a single HB update per site per configuration.

1

2

3

4

multiple refinementslevel

0

Figure 5: Generation of a lattice configuration via multiple refinement steps. Configurations at a coarse level
n+1 are mapped to a lattice at level n, and the remaining degrees of freedom are subsequently determined
stochastically. The process is repeated until reaching the top level.

Generalization of this strategy to higher dimensions, and to more complicated systems is
highly nontrivial. In all but the simplest cases, the RG matched coarse action will involve increas-
ingly complicated and nonlocal interactions at each subsequent stage of coarse-graining. Further
complicating the matter, fermion interactions are usually represented by nonlocal fermion determi-
nants. Finally, an exact refinement prescription–as outlined in the toy model above–may no longer
be feasible due to the coupling of interpolated degrees of freedom at the refined level (the one-
dimensional Ising model is a special case, where interpolated degrees of freedom only couple to
coarse degrees of freedom, which have been mapped to the fine lattice). One way to proceed in
these cases is to rely upon a variety of approximations. These include:

7
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1. Truncating the coarse action to only its dominant interactions; an example of such a trunca-
tion for the case of a two-dimensional Ising model is shown in Fig. 6.

2. Using an inexact refinement prescription; for example, for systems involving continuous
degrees of freedom, one might consider a refinement prescription based on interpolation.

These approximations, by construction, primarily manifest as short-distance errors in the resulting
fine ensemble. These errors may be corrected by rethermalizing the ensemble using conventional
MC algorithms. Although conventional algorithms based on local updating have rather long decor-
relation times, one might expect (and one can explicitly verify) that the rethermalization time is
rapid by comparison since it is only the short distance properties of the ensemble that require cor-
rection. Connecting back to Eq. 4.1, one sees that generation and refinement of RG matched coarse
ensembles provides a means by which to realize an initial distribution of fine configurations P0,
and the rapid nature of the rethermalization implies that this distribution is nearly orthogonal to the
slow modes of evolution, as desired.

RG induced interactions truncated interactions

Figure 6: Left: A schematic illustration of the interactions (nearest, next-to-nearest and plaquette) induced
by coarse-graining a two-dimensional Ising model (open circles represent degrees of freedom that have been
integrated out). Right: Interactions retained after truncating the coarse-grained Hamiltonian.

To summarize the discussion thus far, based on the insights of the one-dimensional Ising
model, the proposed multiscale thermalization scheme entails the following set of steps:

1. Generate a coarse ensemble using a RG matched coarse action.

2. Map the coarse ensemble onto a fine lattice, while preserving the long distance properties of
the ensemble.

3. Rethermalize and evolve multiple refined streams using the fine action to correct any errors
induced due to approximations.

In Fig. 7, I provide a schematic comparison of conventional and proposed approaches. In the
conventional approach, the computational cost per configuration is controlled by the decorrelation
time τdecorr ∼ τ1. In the multiscale thermalization approach, the computational cost is controlled
by the rethermalization time τretherm; ideally, the coarse matching should be chosen and refinement
prescription should be designed such that τretherm ∼ τk < τ1 for some mode of evolution satisfying
k > 1.

I now turn toward a specific realization of the above proposal for gauge theories. There are a
number strategies for mapping coarse configurations onto a fine lattice. The most natural strategy
for continuous degrees of freedom is to simply interpolate the fields, as previously mentioned (also

8
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Figure 7: A schematic illustration of a conventional MC simulation (a) and the strategy taken for multiscale
thermalization (b). Boxes represent coarse (�) and fine (�) configurations which are either unthermalized
(empty) or thermalized (gray filled). Dashed lines enclose the thermalized ensemble used to perform esti-
mates. Note that in a conventional simulation, the number of MC updates required to obtain a decorrelated
configuration in equilibrium is τdecorr, whereas for multiscale thermalization it is τretherm.

see, e.g., [43, 44, 45]); a method inspired by ’t Hooft [45] was applied successfully for this purpose
in [2]. The benefits of the ’t Hooft-inspired scheme are that the implementation is simple, local,
and efficient. Furthermore, it preserves the hypercubic and translational symmetries of the coarse
lattice. Finally, and most importantly, the scheme preserves the long-distance properties of the
coarse configurations. In particular, the scheme preserves all even length Wilson loops originating
from even sites, as well as the topological charge, and topological charge density at sufficiently
fine lattice spacing. In Fig. 8, an explicit example of this preservation property is shown, where
a fine SU(3) gauge configuration had been coarse-grained and refined, and the topological charge
density subsequently compared. One can see that indeed the gross structure is identical between
fine and refined configurations, and it is only the short distance structure that requires correction.
In Fig. 9 (left), a plot of the correlation between fine and refined topological charge is displayed as
a function of the lattice spacing for pure SU(3) gauge theory. Although at coarse lattice spacing
the correlation is quite poor, it rapidly rises towards unity for lattice spacings below 0.7 fm.

In [2] and [13] the quality of the initial distributions obtained by prolongation of matched
coarse ensembles was studied extensively in terms of the distribution overlap onto the slow modes
of evolution. Long distance observables serve as probes for determining this overlap, as made ev-
ident by the time scale required to equilibrate the ensemble by conventional fine evolution. These
time scales were studied using a variety of observables, including the action density evaluate on
fields at large Wilson flow times [46], and the pion correlation function estimated at half the tempo-
ral extent of the lattice (T ). Studies were performed for both pure SU(3) gauge theory, as demon-
strated in Fig. 9 (right), and for two color QCD with two heavy quark flavors [amπ = 0.4446(6)
and a fπ = 0.1001(18)], as demonstrated in Fig. 10. In both cases the thermalization time required
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refinecoarse-grain

Figure 8: Top: Coarse-graining and refinement of the degrees of freedom associated with the bonds of a
space-time lattice. Bottom: Topological charge density associated with a smooth lattice field configuration
(left) and that obtained from the same configuration after coarse-graining and then subsequent refinement
(right).

for simulations starting from hot (disordered) and cold (ordered) configurations, and the associated
rethermalization time required for configurations prepared by prolongating RG matched coarse en-
sembles are displayed. In both the pure gauge theory, and the theory with dynamical fermions,
the rethermalization times appear to be rapid compared to typical thermalization times for hot and
cold starts. Furthermore, the rethermalization time for non-topological quantities appear to be far
shorter than the decorrelation times for a conventional simulation, as probed by observables sensi-
tive to the topological charge. In both cases, the algorithm employed for (re)thermalization was a
conventional Hybrid Monte Carlo (HMC) algorithm. Note that within this framework for construct-
ing initial distributions P0, the overlap with the slowest mode of evolution will not vanish exactly
due to the fact that the topological charge distribution of the initial ensemble has lattice artifacts
inherited from the coarse action. However, these lattice artifacts may be controlled and system-
atically removed with the use of improved actions at the coarse level (or possibly by subsequent
reweighting).

In the case of dynamical QCD, understanding the properties of the Dirac spectrum on re-
fined ensembles played a crucial role in the successful application of the multiscale thermalization
method [13]. To understand why, it is helpful to compare the Hermitian Dirac spectrum for both
the RG matched coarse ensemble, shown in Fig. 11 (left), and the spectrum computed on the cor-
responding fine ensemble obtained using the same (prolongated) coarse configurations, shown in
Fig. 11 (right, labeled R(0)). In the latter case, one finds a significant accumulation of spurious
near-zero modes, which can be attributed to the short-distance character of the refined ensemble.
These near-zero modes are particularly problematic for the rethermalization stage of the multi-
scale approach, since the large fermion forces they induce can lead to instabilities in the evolution.
However, it was found that a gap in the Dirac spectrum could be produced by performing a very
short quenched evolution of the refined ensemble (e.g., two HMC trajectories), after which, proper
dynamical gauge evolution could proceed without issues. In Fig. 11 (right, labeled R(1) and R(2))

10
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Figure 9: Left: Correlation between the topological charge for configurations before and after coarse grain-
ing and refinement (as depicted in Fig. 8) as a function of the lattice spacing for pure SU(3) gauge theory
defined by the Wilson gauge action. Right: Plot of thermalization curves for hot (H) and cold (C) starts, and
for an ensemble generated using a RG matched coarse action and subsequently refined (R).
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Figure 10: Rethermalization curves for Yang-Mills action density (left) and pion correlator at large time
separation (right) as a function of the number of HMC trajectories for SU(2) gauge theory with two heavy
quark flavors. Curves represent thermalization from a cold start (C), a hot start (H), and refined ensemble
after evolving for two quenched HMC trajectories (R(2)).

examples of Dirac spectra after one and two quenched trajectories are shown, respectively.

5. Conclusion

Several interesting and promising strategies for addressing topological freezing have been pro-
posed during the past year. In this talk, I have introduced the basic concepts behind three ideas that
tackle the problem from the standpoint of ensemble generation, namely the use of non-orientable
manifolds, metadynamics simulations, and multiscale thermalization. It should be emphasized
that each of these methods provide very new and very different approaches toward addressing the
same underlying problem. Although each of these strategies show significant promise based on ex-
ploratory studies, they also possess some rather interesting drawbacks and opportunities for further
exploration and improvement.

Although the results for multiscale thermalization appear very promising, the success of that
strategy relies upon the ability to prepare an initial distribution (P0) of configurations that is or-
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Figure 11: Left: Hermitian Dirac spectrum for SU(2) gauge theory with two heavy quark flavors, calculated
on a RG matched coarse ensemble. Right: Hermitian Dirac spectrum for the same theory, determined on the
corresponding fine lattice using refined field configurations, R(0). Also shown is the Dirac spectrum after
several quenched HMC steps, R(τ), for τ > 0. The vertical dashed line corresponds to the bare PCAC mass
determined on an equilibrated fine ensemble.

thogonal to the lowest modes of evolution. As had been demonstrated, one successful realization
of this strategy is based upon refinement of a coarse ensemble that has been generated using a RG
matched coarse action. The advantages and disadvantages of that realization in the context of gauge
theories are detailed at length in [2]. These include:

1. The initial ensemble obtained by prolongation will have a topological charge distribution that
is only correct up to coarse action lattice artifacts (removal of those lattice artifacts require
rethermalization time scales that are multiples of a full autocorrelation time).

2. The coarse lattice artifacts inherited by the prolongated ensemble, however, can be systemati-
cally removed by improving the coarse lattice action (as is often the case, the tuning involved
requires some additional overhead cost).

3. Non-topological quantities (measured at fixed topology, or on a fixed but possibly incorrect
topological charge distribution) appear to rethermalize on time scales that are significantly
shorter than the full autocorrelation time, based on empirical evidence (i.e., by studying
rethermalization times of various long distance observables).

As discussed earlier, if an initial configuration distribution has vanishing overlap with the
slow modes of evolution, then the equilibration time will be controlled by shorter time scales. As
such, the full autocorrelation time–as governed by the slowest mode of evolution–is no longer a
relevant time scale in the problem. This observation raises an interesting question: can multiscale
thermalization provide a new avenue for addressing the problem of critical slowing down more
generally (i.e., beyond topological freezing), by avoiding the problem altogether? To clarify the
question, consider setting aside issues of topology–either by choice of boundary conditions (open or
P-periodic) or use of a different algorithm (e.g., metadynamics). Intuition suggests that interpolated
coarse RG matched ensembles will yield better approximations to the fine thermalized ensemble
as the continuum limit is approached. This follows from the simple observation that one can more
reliably interpolate a smooth field compared to a rough field. It is possible that an increased number
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of modes of evolution will be projected out as a result of this procedure as one approaches the
continuum limit, since fields in that regime become locally flat. The interplay between the number
of modes projected out and the scaling of excited modes with lattice spacing as one makes this
approach is an interesting and open question. It may very well be that the rethermalization time
required in the multiscale approach scales more slowly than the decorrelation time for conventional
algorithms as a function of lattice spacing. If this is indeed the case, then multiscale thermalization
would likely provide a new path for avoiding critical slowing down more generally.
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