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QCD at finite quark-/baryon-number density, which descibeclear matter, has a sign problem
which prevents direct application of standard simulatiatimds based on importance sampling.
When such finite density is implemented by the introductioa gfiark-number chemical poten-
tial u, this manifests itself as a complex fermion determinant. aply simulations using the
Complex Langevin Equation (CLE) which can be applied in scabes. However, this is not
guaranteed to give correct results, so that extensive aestequired. In addition, gauge cooling
is required to prevent runaway behaviour. We test theseadstbn 2-flavour lattice QCD at zero
temperature on a small (4plattice at an intermediate coupling= 6/g?> = 5.6 and relatively
small quark mass = 0.025, over a range qgft values from 0 to saturation. While this appears
to show the correct phase structure with a phase transitiprramy /3 and a saturation density
of 3 at largeu, the observables show departures from known values at gmalle are now
running on a larger lattice (#pat weaker couplingg = 5.7. At u = 0 this significantly improves
agreement between measured observables and known vahgetese is some indication that
this continues to smajls. This leads one to hope that the CLE might produce correaiteein
the weak-coupling — continuum — limit.
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1. Introduction

QCD at a non-zero quark-number chemical potentiddas a complex fermion determinant.
Hence standard lattice-gauge-theory simulation methods, which are basegartance sampling,
cannot be applied directly. However, the Langevin Equation does lyaamémportance sampling,
and can be adapted to complex actions by replacing real fields by compéex[fle[2,[3[}]. For
lattice QCD at finiteu, this means promoting theU(3) gauge fields t&L(3,C).

Early attempts to simulate lattice QCD at finiteising the Complex Langevin Equation (CLE)
were frustrated by runaway solutions which are possible beca8ugC) is non-compact. Re-
cently it was realized that at least part of the reason why this occurstithth&LE dynamics has
no resistance to the production of unbounded fields which are unbdwadee transformations of
bounded fields. This has led to the concept of ‘gauge cooling’, gaagsfarming configurations
to keep them as close as possible to$hg3) manifold [§]. The CLE with gauge cooling has been
applied to QCD at finitgu at large quark mas$][6] f]. B. P.]10] and with smaller quark masses on
small lattices [1]1] and more recently to QCD at finite temperatureaffid]. At weak enough
couplings these simulations are in agreement with results obtained using othedsie

Even when the CLE converges to a limiting distribution, it is not guaranteeatiupe correct
values for the observables unless certain conditions are satigfied41B%[1p]. The reason one
needs to check the validity of the CLE for QCD is to first check the requireitint the gauge
fields evolve over a bounded region, which appears to be true. Sgctimel CLE can only be
shown to converge to the correct distribution if the ‘drift terms’ — the deives of the (effective)
action with respect to the fields — are holomorphic functions of the fieldsawBsecthe fermion
determinant has zeros, the drift term is only meromorphic in the fields. Hixec€LE will only
give correct results if the contribution of the poles in the drift term ardigide. Those of the
above mentioned papers, which perform CLE simulations of QCD at finifgovide tests of the
range of validity of the method.

Recent work reported by Aartf J17] and by Stamatefcl [18] presertodweof determining
when poles in the drift term of the CLE are likely to produce incorrect lissuStudies using
random-matrix theory indicate the range of validity of the CLE and suggesificetttbns of gauge
cooling which can extend this range J19) 20]. There is also recent whikh suggests other
criteria for determining when the CLE will produce correct results andnwheill fail [1]. Other
studies indicate how the introduction of irrelevant terms to the drift term cascdihe CLE to
converge to correct limiting distributionf J22].

We simulate lattice QCD at zero temperature and finiter a 12 lattice a3 = 6/g = 5.6 and
m = 0.025. For these parameters the expected position of the transition fromraty nuclear
matter aty ~ my/3 ~ 0.33 is well separated from any false transitiorpets m;/2 ~ 0.21. We
observe that our results are consistent with a transitiqgnatmy /3, but not with the expectation
that observables will be fixed at thagir= 0 values foru < my/3. At large enougtu the quark
number density does saturate at 3 as expected. Very preliminary resthissefsimulations were
reported at Lattice 201% [P3].

We are now simulating on a 4attice at weaker couplingd = 5.7, andm= 0.025. Aty =0
we find that the observables are in far better agreement with known résaiftgor 3 = 5.6. We
are now moving tqt > 0. We see preliminary indications that for smallthe observables are still



Complex Langevin for Lattice QCD atF 0andu > 0. D. K. Sinclair

in better agreement with known results than was trug at 5.6. This leads us to hope that the
CLE will converge to the correct distributions in the continuum — weak cogplitimit.

2. Complex Langevin Equation for finite density Lattice QCD

If S(U) is the gauge action after integrating out the quark fields, the Langevirtieqdiar the
evolution of the gauge fields in Langevin timet is:

/d .5
—i <au|> U= —.5—UIS(U)+:7| (2.1)

wherel labels the links of the lattice, angl = n?A2. Here A, are the Gell-Mann matrices for
SU(3). nf(t) are Gaussian-distributed random numbers normalized so that:

(NR®)nPt)) = 63§ 6t —t') (2.2)

The complex-Langevin equation has the same form except thatdla@e now ifSL(3,C). S
nowSU, u) is

SU.u)=BY {1— %Tr[UUUU + (uuuuﬂ]} - %Tr{ln[M(U,u)}} (2.3)

whereM(U, u) is the staggered Dirac operator. Note: backward links are represbpted !
notUT. Note also that we have chosen to keep the noise-vertaal. n is gauge-covariant
underSU(3), but not undeSL(3,C). This means that gauge-cooling is non-trivial. Referefide [15]
indicates why this is not expected to change the physics. After takidgU, 1) /U, the cyclic
properties of the trace are used to rearrange the fermion term so thaiginmereal foru = 0 even
after replacing the trace by a stochastic estimator.

To simulate the time evolution of the gauge fields we use the partial secondfanaalism
of Fukugita, Oyanagi and Ukawd. [44] 45] 26]

After each update, we gauge-fix iteratively to a gauge which minimizes theitynitarm —
gauge cooling[J5]:

F(U) = % ZTr [ul*ul +(Uuyt-2| >0, (2.4)

whereV is the space-time volume of the lattice.

3. Zero temperature simulations on a12* lattice

We simulate lattice QCD with 2 flavours of staggered quarks at finits a 12 lattice with
B =5.6 and quark mass = 0.025, using the CLE with gauge cooling.isinthe range & u <1.5
which includes the expected phase transitiop at my /3 ~ 0.33 and that of the phase-quenched
theory aty ~ my/2 ~ 0.21. (my andm; are from the HEMCGC collaboratiof [P[7,]28] 29] ). The
upper limitu = 1.5 lies well within the saturation regime where each lattice site is occupied by one
quark of each colour.

We simulate for 1-3 million updates of the gauge fields at gaghlue. The input updating
incrementdt = 0.01. Since we use adaptive rescalinglbto control the size of the drift term, the
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actualdts used in the updates are considerably smaller than this. The length of thieratpd part

of the run at eaclf8 then lies in the range 100-1000 langevin time units. We record the plaquette
(action), the chiral condensate and the quark-number density evBryddates, and the unitarity
norm after each update.

4 .
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Figure 3: Quark number density, normalized to offiéggure 4: Chiral condensate, normalized to one stag-

staggered quark (4-flavours), as a functioruof ~ gered quark (4-flavours), as a functionjef Dashed
line is the correct value gt = 0.

At eachu we observe that the unitarity norm appears to evolve over a compact dostnédn
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is one of the requirements for the CLE observables to have a well-definedllinsialso a neces-
sary but not sufficient condition for it to produce correct results.uAt 0 andu = 0.5 we have
produced trajectories from both an ordered start and starting frongaitigated configuration at
U = 1.5. In both cases, it appears that the compact domain is independentstéthes are the
average observables. Figife 1 shows the evolution of the unitary nomms: 8.5 from the 2 dif-
ferent starts. Itis interesting to note that the unitarity norm has a minimum soenewhthe range
0.35< u < 0.9. Does this mean that the CLE produces correct resultg farfficiently large?

Figure[2 shows the plaquette as a functionuofrom these runs. We note that there is a
very small but significant difference between the valugiat 0 and the correct value obtained
from an RHMC simulation. The real Langevin equation yields a value signtficaloser to the
correct value, so this deviation is not due solely to the inexact nature afihgevin method. For
U < 0.25, the plaquette appears to be (almost) independentad expected. Fau > 0.35 the
plaguette increases wifh up until saturation.

Figure[3 shows the quark-number density as a functiqgm ¢for u < 0.25 this number density
is small — it is expected to be zero. Far> 0.35 this number density increases, reaching the
saturation value of 3 (3 quarks of different colours at each site)afgeu. We note, however, that
this density does not appear to show an abrupt increase at the transitingla be expected for a
first-order phase transition.

In figure [§ we plot the chiral condensat@p(y)) as a function ofu. At u = 0 it already lies
appreciably below the exact value. Instead of remaining constant up tehtme® transition to
nuclear matter as expected , it starts to fall monotonically @nce0, finally reaching the expected
value of zero at saturation.

Hence forB = 5.6, m= 0.025 on a 12 lattice, the CLE appears to produce the correct phase
structure, although the phase transitioruat my/3 does not show any evidence for its expected
first-order behaviour. The plaquette shows small deviations from threatoralues for smalli as
does the quark-number density. The chiral condensate shows |lapeartdres from its expected
behaviour.

4. Zero temperature simulations on a16* lattice

We are now running CLE simulations on a*lléttice. At = 5.6, m= 0.025, comparison
with our 12* runs indicates that finite size effects are small as are fitiggrors.

This larger lattice allows us to run at weaker coupling. We are now runnirg a 5.7,
m = 0.025. For ourf3 = 5.6, m= 0.025 runs atu = 0, the CLE measured plaquette value is
0.4369(06) compared with the RHMC value4B5522), while the chiral condensate isI®747)
compared with ®1428) for the RHMC. Atf3 = 5.7, m= 0.025, the CLE measured plaquette
value is 0423744) compared with the RHMC value423051), so the systematic error has been
reduced by roughly a factor of 2. For the chiral condensate the ClLEeve0173811) compared
with the RHMC value of AL7542), almost an order of magnitude improvement. This gives us
some hope that the CLE will give correct values for observables in tlagweupling (continuum)
limit. We are now extending thege= 5.7, m= 0.025 simulations to non-zerp.
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5. Discussion, Conclusions and Future Directions

We simulate 2-flavour Lattice QCD at finiteon a 12 lattice atf = 5.6, and light quark mass
m= 0.025 using the CLE with gauge cooling. We see indications of the expectaeé piaasition
from hadronic to nuclear matter at ~ my/3, and the passage to saturation at lguwgeThere
are, however, systematic departures from known and expected re&ulis= 0 the plaquette and
chiral condensates disagree with known results. For the plaguette teensyte error is very small
and foru < my/3 the plaquette is almost independentiofs expected. At smaljk, the chiral
condensate decreases with increagingather than remaining constant. These do not appear to
be a finite-size effects. The reason for these systematic errors impabBubecause zeros of the
fermion determinant produce poles in the drift term, which prevent it fr@ndp holomorphic in
the fields, a requirement for proving the validity of the CLE. These zdsusm@oduce poles in the
chiral condensate, which could explain why it shows larger deparftves expected values than
do other observables.

We are extending our simulations to*lléttices. In addition to showing that finite size (and fi-
nite dt) effects are small, these allow us to simulate at smaller cougbirgb.7. Here, simulations
at 4 = 0 show that systematic errors are significantly reduced. This leads to feethat, in the
weak coupling (continuum) limit, the CLE might yield correct results (after caiiig todt = 0).
Preliminary results from simulations witta > 0 look promising.

Modifications to the CLE designed to reduce failures of the method need tarbegal. These
include modifications to gauge coolirjg]19], and modifications to the dynamitieetiptroduction
of irrelevant operators either to the action or to the drift term diretly [22].

We plan to extend our zero-temperature simulations to smaller quark massiés téfimpera-
ture simulations are also planned.

Once it is known that the CLE is generating correct results, we will studiitiieu phase for
signs of colour superconductivity. This will also require simulationdNpe= 3 andN; =2+ 1. At
finite temperature we will search for the critical endpoint.
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