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We propose a new determination of the confinement-deconfinement transition by using the imag-
inary chemical potential. The imaginary chemical potential can be interpreted as the Aharonov-
Bohm phase and then an analogy of the topological-order suggests that the Roberge-Weiss end-
point would define the deconfinement temperature. Based on the topological property, we can
construct a new quantity which describes the confinement-deconfinement transition. This quan-
tity is defined as the integral of the quark number susceptibility along the closed loop of θ where
θ is the dimensionless imaginary chemical potential. Expected behavior of it at finite temperature
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1. Introduction

Understanding the confinement-deconfinement transition in quantum chromodynamics (QCD)
is one of the interesting subjects in nuclear physics, elementary particle physics and astrophysics. In
the heavy quark mass limit, it is well known that the spontaneous center (ZNc) symmetry breaking is
directly related to the confinement-deconfinement transition, where Nc is the number of color. Then
the Polyakov-loop becomes an exact order-parameter of the confinement-deconfinement transition.
On the other hand, we cannot find any exact order-parameters in the case with dynamical quarks
at present where the direct relation between ZNc symmetry and the confinement-deconfinement
transition is vanished.

Topological order — The notion of the topological order may be important to understand the
nature of the confinement-deconfinement transition. Recently, the confined and deconfined states
at zero temperature (T = 0) are classified by using the topological order [1] in Ref. [2]. In the
classification, the degeneracy of the ground state plays a crucial role. Motivated by the progress,
it has been suggested that the confinement-deconfinement transition at finite temperature (T ) can
be described by using the analogy of the topological order. In the determination, the free-energy
degeneracy plays a crucial role [3].

Imaginary chemical potential — In QCD at finite T , the imaginary chemical potential (µI)
is an external parameter related with the imaginary quark number density and shows the special
periodicity. It is called the Roberge-Weiss (RW) periodicity [4] and its period is 2πT/Nc. The RW
periodicity leads the free-energy degeneracy and thus it is natural to think that some hints to un-
derstand the confinement-deconfinement transition are hidden in the imaginary chemical potential
region.

Quark number holonomy — We investigate the confinement-deconfinement transition by us-
ing the imaginary chemical potential based on the analogy of the topological order. We discuss
the contour integral along the closed loop of the dimensionless quark imaginary chemical poten-
tial, θ = µI/T . Particularly, we focus on the behavior of the quark number density at finite µI

which is the θ -odd quantity and propose a new (quantum) order-parameter which can describe the
confinement-deconfinement transition even if dynamical quarks are acting in the system. We call it
the quark number holonomy. The quark number holonomy seems to be a similar quantity with the
Uhlmann phase [5, 6]. The Uhlmann phase can describe the topological order at finite T at least in
the one-dimensional fermion systems such as the topological insulator and the superconductor [6].
The Uhlmann phase is defined by using the amplitude for the density matrix where amplitudes
form the Hilbert space. There is the U(n) gauge freedom of the amplitude where n is the dimen-
sion of the space and it is a generalization of the U(1) gauge freedom of pure quantum states. Thus
the Uhlmann phase is the extension of the Berry phase. At finite T , the Uhlmann phase includes
information of the density matrix of the statistical mechanics and is calculated by the contour in-
tegral along the crystalline momentum. Unfortunately, the calculation of the Uhlmann phase in
QCD seems to be very difficult or impossible at present. However, the quark number holonomy is
calculable quantity in QCD and it also includes the information of the density matrix via the quark
number density. It should be noted that the quark number holonomy can be easily calculated in the
effective models of QCD and lattice QCD simulation as discussed later. It is the most important
reason why we propose the new quantity for the confinement-deconfinement transition.
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1.1 QCD periodicities and transitions at finite µI

It is known that the QCD partition function (ZQCD) has the RW periodicity [4];

ZQCD(θ) = ZQCD

(
θ +

2πk
Nc

)
, (1.1)

where k is any integer. The RW periodicity is an exact property of the QCD partition function. In
the pure gauge limit m → ∞, there is the ZNc symmetry, but it is explicitly broken by dynamical
quark effects. In addition to the RW periodicity, QCD has special transition at θ = (2k− 1)π/Nc

which is so called the RW transition. The RW periodicity is occurred via different ways in the
confined and deconfined phases. Therefore, we can expect the endpoint of the RW transition line.
The endpoint of the RW transition is called the RW endpoint and its temperature is denoted by TRW.

1.2 Deconfinement transition from RW periodicity

In Ref. [7], the authors proposed the new classification of the confined and deconfined phases
at finite T based on the RW periodicity. The different realization of the RW periodicity plays a
crucial role in the classification as a difference of the degeneracy of the free-energy. In our approach
for the investigation of the confinement-deconfinement transition, we focus on the response of
the system against θ as an indicator of the non-trivial free-energy degeneracy: The system does
not show singularities along θ at (T , µR) in the confined phase, but it shows the singularity in
the deconfined phase. Details of singularities are explained in Sec. 2; for example, see Fig. 1.
The confinement-deconfinement transition temperatures determined by the non-trivial free-energy
degeneracy and the Polyakov-loop are matched with each other in the infinite quark mass limit. In
the next subsection, we propose a new quantum order parameter of the confinement-deconfinement
transition based on the RW periodicity. In the following discussions, we mainly concentrate on the
case with µR = 0.

2. Definition of quark number holonomy

The quark number density (nq) above TRW should have the gap at θ = (2k− 1)π/Nc which
reflects the θ -odd property. The schematic behavior of nq with Nc = 3 is shown in Fig. 1. The
periodic solid and dashed lines represents nq at sufficiently high and low T comparing with TRW,
respectively. By using nq, we can construct the quantum order-parameter;

Ψ(T ) =
[∮ 2π

0

{
Im

(dñq

dθ

∣∣∣
T

)}
dθ

]
, (2.1)

where ñq is the normalized quark number density defined as ñq ≡ Cnq here the coefficient C
[MeV−3] is introduced to make ñq dimensionless. It becomes non-zero at T � TRW and zero at
T � TRW because the information of the gap at θ = (2k−1)π/Nc is missed through the differential
calculus and the numerical integration. We call Eq. (2.1) the quark number holonomy.

The integrand of Eq. (2.1) is nothing but the quark number susceptibility (χq) at finite θ . The
expected behavior of the quark number holonomy as a function of T is shown in Fig. 2. We assume
that the RW endpoint is the second (first) order in the case A (B). The schematic phase diagram
in the case B is shown in the inset figure of Fig. 2. When TRW is the first-order, the RW endpoint
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Dimensionless imaginary chemical potential
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Figure 1: The schematic behavior of nq as a function of θ for Nc = 3. The periodic solid and dashed lines
represent the quark number density at T � TRW and T � TRW, respectively.

can have two more first-order lines starting from the RW endpoint. In this paper, we call it beard
line and the endpoint temperature of the beard line is denoted by TBeard. This triple point scenario
has been predicted by the lattice QCD simulations [8, 9]. This behavior may be induced by the
correlation between the chiral and deconfinement dynamics, but details are still under debate.

In the case A where the RW endpoint is the second order, the quark number holonomy can be
expressed as

Ψ =±2Nc lim
ε→0

[
Im ñq(θ = θ

∓
RW)

]
, (2.2)

where θ
∓
RW = θRW∓ε = π/Nc∓ε with the positive infinitesimal value ε . Below TRW, nq(θ = π/Nc)

is exactly zero and thus Ψ = 0, but Ψ becomes non-zero above TRW. The coefficient Nc in Eq. (2.2)
reflects the number of the gapped point in the 0 ≤ θ ≤ 2π region.
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Figure 2: The expected behavior of Ψ as a function of T . In the case A, the RW endpoint is the second
order, while it is the triple point in the case B. The actual value of ΨT→∞ is explained in the text. The inset
figure shows the schematic phase diagram in the case B with Nc = 3 as a function of θ and T .
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In the case B where the RW endpoint is the triple point, situations become complicated in the
TBeard < T < TRW region. In this region, ñq jumps from high-T curve to the low-T curve at θ = θB

where θB is defined as the dimensionless imaginary chemical potential on the beard line. The quark
number holonomy can be expressed as

Ψ = 2Nc lim
ε→0

[
Im

{
ñq

(
θ = θ

−
B

)
− ñq

(
θ = θ

+
B

)}]
6= 0, (2.3)

where θ
∓
B mean θB ∓ ε . The number of the gapped point is 2Nc in the 0 ≤ θ ≤ 2π region above

TBeard. Below TBeard, Ψ should be zero.
Some asymptotic behaviors such as the high T and heavy m behaviors can be obtained from

the behavior of nq. Details are shown in Ref. [7].

3. Discussions

Firstly, we discuss the current status of the present determination and the ordinary determi-
nation of the deconfinement temperature. Readers may doubt the validity of the present definition
of the deconfinement transition temperature since the deconfinement temperature, TD ≡ TRW or
TBeard, is substantially higher than the chiral pseudo-critical temperature. It was considered that the
chiral and the deconfinement crossover take place at similar temperatures from the rapid change
of the chiral condensate and the Polyakov-loop in the 2+ 1 lattice QCD simulations; see for ex-
ample Ref. [10, 11]. With the highly improved quark action, it now seems that the Polyakov-loop
grows very gradually [12, 13]. An effective model analysis of recent lattice data implies that
the deconfinement pseudo-critical temperature (∼ 215 MeV) is substantially higher than the chiral
pseudo-critical temperature [14]. By comparison, a recent lattice determination of the RW endpoint
temperature with physical quark masses implies that the continuum extrapolated value of TRW is
208(5) MeV [15]. Therefore, higher TD does not invalidate the discussion, but may be supported
by the recent lattice data via effective model analysis.

Secondly, we discuss the difference between the quark number holonomy and the dual quark
condensate [16]. The dual quark condensate is defined as

Σ
(n) =−

∮ 2π

0

dϕ

2π
e−inϕ

σ(ϕ), (3.1)

where ϕ = θ + π specifies the boundary condition for the temporal direction of quarks, σ(ϕ)

is the ϕ-dependent chiral condensate and n represents the winding number along the temporal
direction. Particularly, Σ(1) shares similar properties with Φ because Φ is also the winding number
1 quantity and thus it can be used as the indicator of the confinement-deconfinement transition. In
the quenched approximation, the dual quark condensate is well defined, but there is the uncertainty
in the dynamical quark case. Therefore, there is the uncertainty in the determination of the dual
quark condensate. Also, it is well known that the dual quark condensate is strongly, for example,
see Ref [17]. On the other hand, the quark number holonomy (2.1) can provide non-zero value
above TRW or TBeard without any uncertainties. It is the advantage of the quark number holonomy.

Finally, the sign problem is discussed when we calculate the quark number holonomy at finite
µR. At finite µR, Eq.(2.1) should be replaced as Ψ(T ) → Ψ(T,µR). This means that the θ inte-
gration should be evaluated with fixed T and also µR. Therefore, we must consider the complex
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chemical potential where the sign problem arises. At finite imaginary chemical potential (µR = 0),
we can use the γ5 hermiticity and then the sign problem does not matter at finite imaginary chemical
potential, µ∗ = −µ when we calculate Ψ(T ). On the other hand, at finite real chemical potential,
the Lefschetz thimble path integral method [18] can help us. In Ref. [19], it is shown that this
method leads the saddle-points which manifests the C K symmetry where C and K express the
charge and the complex conjugation operator, respectively. Unfortunately, the C K symmetry is
not preserved at finite complex chemical potential, µR 6= 0 and θ 6= 0, when we calculate the quark
number holonomy. Thus, the calculation becomes complicated even in the mean-field calculation
of the QCD effective models. In this case, we should perform the matter-of-fact calculation based
on the Lefschetz thimble path integral method. Actual challenge of the calculation will be shown
elsewhere.

4. Summary

In this talk, we explained a new quantity to describe the confinement-deconfinement transition
based on topological properties of QCD in the imaginary chemical potential region. We call it the
quark number holonomy which is defined by the contour integral of the quark number susceptibility
along the closed loop of θ . The quark number holonomy seems to be similar to the Uhlmann phase
which can be used to classify the topological order at finite T in the condensed matter physics.

The quark number holonomy can have a non-zero value above TRW or TBeard and it becomes
zero below these temperatures. This behavior is related with the different realizations of the free-
energy degeneracy above and below TRW. From the model independent analysis, we find that the
quark number holonomy is proportional to N2

c in the deconfined phase, while it does not in the
confined phase if we determined the confinement-deconfinement temperature as the topological
phase transition.

We have discussed the similarity between the quark number holonomy and the dual quark
condensate which is sometimes used to investigate the confinement-deconfinement transition. Cal-
culations of the dual quark condensate has the uncertainty when the dynamical quark is taken into
account, but the quark number holonomy does not have such uncertainty. This is the strong ad-
vantage of the quark number holonomy. Finally, we have discussed the sign problem when we
calculate the quark number holonomy at finite real chemical potential. In this case, we should
consider the complex chemical potential and thus we need extremely care of the sign problem.
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