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The concept of a screening mass is a powerful tool to simplify the intricate physics of in-medium
test charges surrounded by light charge carriers. While it has been successfully used to describe
electromagnetic properties, its definition and computation in QCD is plagued by questions of
gauge invariance and the presence of non-perturbative contributions from the magnetic sector.
Here we present a recent alternative definition of a gauge invariant Debye mass parameter fol-
lowing closely the original idea of Debye and Hiickel. Our test charges are a static heavy quark-
antiquark pair whose complex potential and its in-medium modification can be extracted using
lattice QCD. By combining in a generalized Gauss-Law the non-perturbative aspects of quark
binding with a perturbative ansatz for the medium effects, we succeed to describe the lattice
values of the potential with a single temperature dependent parameter, in turn identified with a
Debye mass. We find that its behavior, as evaluated in a recent quenched lattice QCD study, devi-
ates from that in other approaches, such as hard-thermal-loop perturbation theory or from electric
field correlators on the lattice. In particular around the phase transition its values tend to zero

significantly faster than at weak-coupling.
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The Debye mass in Quantum-Electrodynamics (QED) is a well defined concept and related to
the decay of the gauge invariant static electric field correlator in a thermal medium or equivalently
to the dynamical emergence of a mass for longitudinal photons from their static self energy I1
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Unfortunately neither the color electric field nor the gluon self energy are gauge invariant in non-
Abelian gauge theories. Perturbatively it is only possible to compute the self energy in Quantum-
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Chromodynamics (QCD) [1] up to logarithmic correction to the leading order m%,o =gT % + ?/,
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beyond which genuine non-perturbative effects from the magnetic sector contribute. Convention-
ally these are encoded as two additional constants ki, which need to be fixed using numerical
simulations at high temperatures, where higher corrections in g can be neglected. Formally the De-
bye mass may be defined from the gauge invariant correlator of color singlet operators &; jx Tr[AoFji],
which are amenable to simulation in a 3-dimensional effective field theory called EQCD [2, 3, 4].
In this theory, which, if its matching to QCD is carried out perturbatively, is applicable at high
temperatures 7 > T¢, rather sizable corrections k; = 2.5(2) and k; = —0.5(2) have been found.

On the other hand one can consider the practical approach of returning to the original ideas
of Debye and Hiickel and to define the Debye mass by a physical process, e.g. the interaction of
heavy test charges in a medium. While in the original work [5] ions in solutions were considered,
for QCD, heavy-quark bound states may play a similar role. Indeed it is known that the behavior of
so called quarkonium (c¢ or bb) can be described by an in-medium potential. Therefore if one could
formulate the temperature dependence of such a potential in terms of a Debye mass it would provide
a practical means to describe the relevant physics of in-medium quarkonium binding. Earlier works
using model potentials [6, 7], such as the color singlet free energies and fitting a purely screened
Coulombic ansatz —agexp|—mpr|/r to their large distance behavior found quite small corrections
k1 ~ 0.35 and Kk, =~ —0.1 to the perturbative behavior of mgCD.

Here we wish to go beyond these studies in two ways: first by using the proper effective field
theory based potential extracted from lattice QCD [8] and secondly by elucidating its in-medium
modification beyond simple coulomb screening [9]. The former is related to the fact that with the
maturation of effective field theories, such a non-relativistic QCD (NRQCD) and potential NRQCD
(pPNRQCD) [10, 11, 12] it has become possible to systematically relate the concept of an in-medium
potential for heavy quarks at finite temperature with the underlying microscopic theory of QCD.
Systematically here means that the potential can be written as a static potential with corrections
according to higher powers of the heavy quark velocity v ~ p/m, which order by order can be
matched to a QCD observable. If a potential description exists then the late time behavior of the
Wilson loop can be used to define the static contribution via

i&,WD (t7 r)
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Figure 1: Re[V] (right) and Im[V] (left) extracted from quenched QCD simulations at § = 6.1, §, =4 on
lattices with Ny = 32 (filled points). The values of Re[V] are shifted by hand in y-direction, those of Im[V]
in x-direction. Colored errorbars arise from a ten-bin Jackknife resampling and the gray errorbands from
varying the default model of the underlying Bayesian spectral reconstruction. Solid lines show the analytic
parametrization of the potential from a generalized Gauss-Law. Fitting Re[V] at T = 105MeV establishes
the vacuum parameters o, ¢ and ¢, while fits to Re[V] at T = T fix mp. This mp then allows postdicting
Im[V].

which was evaluated for the first time in a resummed hard-thermal loop (HTL) perturbation theory
in [13, 14] and shown to take on complex values

- —mpr > sin(xz)
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We absorb the factor Cr into the coupling constant ¢, = gjzéF , 1.e. use the same convention as in the

phenomenology literature. Since a real-time definition such as Eq.(3) is not directly amenable to
lattice simulations it was proposed in [15, 16] to instead use a spectral decomposition of the Wilson
loop to relate its spectral function to the potential

V(r) = lim [ dooe ™ ps(o, r)//dwe”"‘”pu(w, r)- )
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As shown more generally in [17] the potential description is applicable if a well defined lowest
lying peak exists in the spectrum with its position and width being related to Re[V] and Im[V]
respectively. The extraction of these spectra from lattice QCD simulations however required the
development of a novel Bayesian approach [18] before a first quantitatively robust result could be
obtained [19]. In the following we will use an updated computation of the potential in quenched
QCD [8] with naive anisotropic Wilson action on 323 x N lattices using B = 6.1 and &, = 4 [20]
corresponding to an a; = 0.097fm and physical box size L = 3.1fm. Using the fixed scale approach
we span temperatures 7 € [105...419]MeV = [0.39...1.4]T¢ by varying the number of temporal
lattice sites Ny € [72...20]. The resulting Re[V] and Im[V] are shown on the left and right in Fig.1
respectively. The values have been shifted by hand for better readability.

Note that below T¢ = 290MeV virtually no change in Re[V] can be seen, while just above T¢
its values show a qualitatively different behavior, with the linear rise being absent, asymptoting to a
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constant. This is reminiscent of the SU (3) phase transition one would expect in the thermodynamic
limit. The imaginary part of the potential also only shows significant values away from zero above
Tc.

Now our aim is to relate the in-medium modification of both Re[V] and Im[V] to the concept
of a Debye mass [9]. The starting point is the observation that the real-valued low temperature
potential between r = 0.1...1.2fm can be extremely well described by a naive Cornell-type ansatz
Vr~o(r) = —ots/r+ or+c, as seen from the topmost purple line on the left of Fig.1. The next
step is to consistently describe the in-medium modification of this non-perturbative vacuum poten-
tial, which we attempt via the generalized gauss law [21] for the auxiliary vector field E we may
associate with the static heavy quark potential

- ( E
v (}Ml) = 4nq8(7). 6)

This expression applies to a general E = ¢r*'#, which reduces either to the well known Coulom-
bic a = —1,q = @&, [@&] = 1 or the confining potential a = 1,¢q = &, [6] = GeV>. Originally Debye
introduced a real-valued background charge to describe the in-medium behavior, which was used
in [7] but which does not allow to treat Im[V]. Instead we will introduce the medium via a permit-
tivity, as is done e.g. in classical electrodynamics. We will make the ansatz of a non-perturbative
bound state being immersed in a gas of weakly interacting quarks and gluons and hence use the
permittivity from leading order HTL.

2 m
e~ (F.mp) = p?im,% - inT@ZI:_nLZ%)Z. %
Note that the temperature enters solely via the single parameter mp here. This permittivity has been
used to investigate the in-medium modification of the potential before [22], but in a way that lead
to unphysical results (divergent Im[V] and unscreened component in Re[V]). Our self consistent
treatment using the Gauss-law avoids these issues.

For the Coulombic part of the vacuum potential we can straight forwardly transform Eq.(6) to
momentum space and multiply £~ to the L.h.s.. Transforming back we obtain the linear-response
like defining equation for the in-medium Coulomb potential

sin(px) p
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where the strength of the modification is clearly governed by mp. Note the presence of an imaginary
part on the left. Solving with appropriate boundary conditions ReV¢(r)|,_., =0, ImV¢(r)|,_, =0
as well as d,ImV¢(r)|,_., = 0 consistently gives Eq.(4). The important point is that in our approach
the in-medium modification of the confining part of the vacuum potential also contributes. Since its
Gauss law cannot be diagonalized by a simple Fourier transform we argue instead in [9], based on
comparison with the outcome if a simple background charge density is assumed, that its defining
equation will also have a linear response form with the same Lh.s. as in Eq.(8). Its in-medium

modification is then governed by the parameter u* = m%)a% and leads to

1 d?Vi(r)
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This expression can still be solved explicitly using the parabolic cylinder functions Dy (x)
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where the expression y/(x) amounts to a Wronskian construction
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Ultimately we combine the above results by a simple linear combination Re[V] = Re[V¢] + Re[Vj]
and Im[V] = Im[V¢] + Im[Vy].

Let us see how well our ansatz allows us to reproduce the lattice results for the potential. As
we cannot simulate directly at 7 = 0, but do not find any changes in Re[V] below T¢, we fix the
vacuum parameters of Vr—g using our data at 7 = 105MeV. Note that once o5, ¢ and c are set via
Re[V] at T ~ 0 all in-medium modification of both Re[V] and Im[V] is characterized by the single
T-dependent parameter mp. We continue by fitting Re[V] via tuning of mp, the outcome of which is
shown as the solid curves on the left of Fig.1 and the corresponding values of mp are given as blue
points in Fig.2. We find that our analytic parametrization of Re[V| works excellently and manages
to faithfully retrace the lattice points within their uncertatinties.

Once myp is set, also Im[V] in our approach is fixed and provides a postdiction of the lattice
values. As seen on the right of Fig.1 at high temperatures and small distances there is even quan-
titative agreement with the lattice, while at lower temperatures we find larger deviations. On the
one hand it is clear that close to and below T¢ the ansatz of a perturbative medium we made in the
derivation will become less and less justified and on the other hand it has to be kept in mind that
the spectral width on which Im[V] is based was extracted using ¢'(20) datapoints, which is quite
small.

As shown on the left of Fig.2, the values of mp/T match the behavior found from inspecting
Re[V]. Where there is no modification of the real-part below T¢ the mass is compatible with zero
and quickly rises to a finite value at 7¢. Our expectation is that if the thermodynamic limit is taken
one will observe a genuine jump due to the first order nature of the ensuing phase transition. The red
solid line denotes a fit according to Eq.(2) of the points above 7¢ (i.e. within the dark red region).
Here we assume that all higher order corrections in g are captured in the two additional fit param-
eters k1. In the absence of a genuine continuum extrapolation the fit uses a continuum corrected
mP" = (1 = T/TE™) = %\/owm with T2 = 0.271GeV and Gppys = 0.173GeV. The four-
loop running coupling we deploy is that of [23] and evaluated at the scale u = 7. Coincidentally
the fit manages to capture even the lowest non-vanishing data.The values for the non-perturbative
corrections to mp obtained are a relatively large k¥ = 2.53 +0.25 and x, = —1.41 £0.15, the latter
is in particular necessary to reproduce the downward trend towards zero close to T = T¢.

Compared to previous results in the literature, we find distinct differences. Both the pure HTL
expression of mp /T as well as the values extracted from the color singlet free energies show an
upward bending close to 7¢, while we observe a clear trend towards zero. Furthermore the slope
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Figure 2: (left) Debye mass parameter mp extracted from quenched QCD (blue points) together with a
continuum corrected fit (red) based on the points above T¢. mp takes on finite values at T, identified by
the gray band. As a crosscheck for the location of ¢, we also plot the normalized autocorrelation time of
a generic Wilson line correlator, which peaks at this temperature. (right) Comparison of the extrapolation
of our values of mp (red band) to values from the literature, i.e. using pure HTL (green), color singlet free
energies (orange) and EQCD (purple). The bright red solid curve correspond to yt = nT the darker red one
to U =4e /27T

of our extracted values indicates that they will rise above those of the previously mentioned results
at intermediate 7' > T¢. If we extrapolate the fit naively, indeed we would find values almost twice
those of pure HTL at 7 ~ 10GeV. Of course a large uncertainty lies within this extrapolation, which
we may make more explicit by fitting our mp /T using the different scale setting yu = 4e™ % “1207,
with v the Euler constant, which was used in the study of mp from EQCD. This fit gives less
natural values for ki > but equally well reproduces our points around T¢. Its extrapolation however
leads to a behavior at 7 ~ 10GeV that becomes compatible with that found in EQCD itself.

It would be very interesting to reduce this uncertainty by extracting the in-medium potential at
much higher temperatures than those considered here. One in turn would be able to ascertain which
scenario is eventually realized and whether mp as defined here will stay far from the perturbative
predictions similar as is the case in EQCD. At the same time a continuum extrapolation of the
underlying complex valued heavy-quark potential at finite temperature will eventually be required
to connect unambiguously to the values of mp in perturbation theory at high temperature. A first
extraction of mp in the context of studying quarkonium binding has been performed also in full
QCD based on Ny = 2+ 1 asqtad lattices [24, 25] and its determination on more realistic HISQ
ensembles in work in progress. On the conceptual side it needs to be better understood whether
the mp considered here can be more formally connected to the concept of a thermal gluon mass,
which would enable its use beyond the description of heavy-quarkonium binding properties at finite
temperature.

Calculations for [8] were performed on the in-house cluster at the ITP in Heidelberg, the
SuperB cluster at EPFL and the BWUniCluster at the KIT. YB is supported by SNF grant PZ0O0OP2-
142524. This work is part of and supported by the DFG Collaborative Research Centre "SFB 1225
(ISOQUANT)".
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