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the chiral limit, both at finite N; and in the continuous time limit. Here we extend the phase
diagram to finite quark masses, with an emphasis on the low temperature first order transition.
We present our results on the quark mass dependence of the critical end point and the first order
line obtained by Monte Carlo via the worm algorithm.
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1. Introduction

It is possible to investigate the full u-7 phase diagram using strong coupling lattice QCD in
the dual representation due to its mild sign problem. The sign problem depends on the representa-
tion of the partition function. It is well known that in the strong coupling limit f = % —0,1.e.in
the absence of the gauge action, one can make use of a dual representation due to the factorization
of one-link gauge integrals [1]. This dual representation is well suited for Monte Carlo simulations
via the worm algorithm [2, 3]. Such simulations on the -7 phase diagram have been carried out
in the chiral limit [4, 5]. Simulation at finite quark masses have been studied in [3]. Here we ex-
tend on these studies and focus on the phase boundary for finite quark masses. Also we obtain the
critical end points (CEP) for finite quark masses.

The Lagrangian for staggered fermions  including an anisotropy 7, favoring temporal gauge
links in order to continuously vary the temperature, is:
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From the Eq. (1.1), one can derive the partition function in the dual representation by integrating
out the gauge links and Grassmann variables:
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This partition function describes a system of mesons and baryons. The mesons live on the bonds
b = (x, [l), where they hop to a nearest neighbor y = x + I, and the hopping multiplicity are given
by so-called dimers &, € {0,...,N,}. The baryon must form self-avoiding loops.
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where ¢ denotes a baryon loop, N is the number of baryons in temporal direction. N; is the number
of lattice sites in temporal direction and ry is the baryon winding number in temporal direction.
o (¢) is the sign. The sign is related to staggered phase factor 1, (x) and the geometry of the baryon
loop ¢: the winding number r, and the number of baryons in negative direction N_(¢). N_(¢) comes
from the negative sign in front of the second term in Eq. (1.1). By the Grassmann constraint, the
summation over configurations ). , ) in Eq. (1.1) is restricted by the following condition.

nt Y (k#(x)+]\zlc\€u(x)|>:Nc (1.4)

u==0,--- . +d

In the chiral condensate part, m, is the quark mass and 7, is the number of monomers at site x.
In the chiral limit, monomers are absent to avoid that the partition function becomes zero. On the
contrary, for finite quark masses, monomers are present.
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2. Chiral and Nuclear Transition

2.1 Symmetries and phase diagram

The chiral symmetry at strong coupling is x’(x) = €/*€™) y(x), where £(x) = (—1)Xs%. It
is spontaneously broken ((¥x) # 0) at low temperatures and densities. At high temperatures and
densities, the chiral symmetry is restored ((}¥x) = 0). Between these two phases, there is a 2nd
order phase transition line with O(2) critical exponents at small chemical potential (1 < i) and
a Ist order line (7)) > Uyic- The tricritical point (TCP) is located between the 2nd and 1st order
lines point. On the other hand, nuclear transition between vacuum phase and nuclear matter phase
does not have the 2nd order line. They have the 2nd order CEP that is similar to the CEP of a
liquid gas transition, and the Ist order line is located below the CEP. The 1st order line w4 (7)
separates the hadronic phase where the baryon density (ng) = 0 from the nuclear matter phase.
At T =0 and above u > U, where (ng) = 1, Pauli saturation occurrs: Due to the finite lattice
spacing, the baryons form a crystal in this nuclear matter phase, i. e. every lattice site is filled by
a baryon. Because of the Pauli principle, the mesons and the baryons can not intersect with each
other. Hence, in the nuclear matter phase, the chiral condensate (¥ x) vanishes. On the contrary, in
the hadronic phase, the baryons are rare and the mesons are common.

2.2 Observables

Our observables for the chiral transition are the chiral condensate (¥ ) and the chiral suscep-
tibility Y.
2

(Nm)s  Xen= ‘l/a(zawlogz = (2;111,)2\/(<N1%4> —(Nu)? = (Nw)), @D

where Ny = Y, n,. In the chiral limit, (}x) = 0 because Ny = 0. For the nuclear transition, we

xx) = gV

measure the baryon density (np) and the baryon susceptibility yz, which are given by the winding
numbers ry € Z.

1 d 1 N, ) )
") = N aGa 084 = v L) =y re)”) — QT (22)
The general reweighting method with the average sign is applied in our study.
Oc
(0)= (99) (o) =exp(—~L’N,Af), (2.3)

(o)

where Af is the difference between full and sign-quenched free energy density.

2.3 Anisotropy and finite temperature

We introduce the anisotropy 7 in the Dirac couplings in order to vary the temperature in the
strong coupling limit B = 0, where a does not vary, but a, does vary in Eq. (1.1). The ratio of the lat-
tice spacing in spatial and temporal direction can be written as a general function (% = &(y). Mean
field theory of Eq. (1.2) suggests [6] that /() = 72, it is an N,-independent choice. &(7) is ob-
tained from non-perturbative calculation [7]. Hence, we use the following notations to distinguish

&(7) and &'().

a“/:atugl(,}/)’ aT/: g’(’)’)

N,

E(y)
N,

ap =au&(y), al = (24
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3. Results

3.1 Average sign

Af[x107 am,=0.01

Figure 1: The average sign in the range of 0.5 < a7’ < 1, and 0.6 < ap’ < 0.8 for am, = 0.01,0.1. Here,
Af = —%log (sign)

In order to show the mildness of the sign problem in the dual the representation, we plot Af in
Fig. 1 which is defined in Eq. (2.3). In the area of 0.5 < aT’ < 1, and 0.6 < ay’ < 0.8, where our
simulation is done, the average sign is quite small for various quark masses am, = 0.01,0.1.

3.2 Finite size scaling at finite density

We use finite size scaling to the chiral and nuclear susceptibilities to find the temperature of
CEP. The finite size scaling is carried out using the following critical exponents. In the chiral limit
(my = 0), the O(2) exponents with LP(=?/), y = 13177 and v = 0.67155 are used for the 2nd
order line in chiral transition and CEP in nuclear transition. For the crossover region in the nuclear
transition, p =1 is applied. We use the exponents with Yy =1 and v = 0.5 at the TCP for the chiral
transition. For the finite quark masses, we apply the Z(2) exponents with y = 1.237 and v = 0.613
at the CEP for both chiral and nuclear transitions. p = 3 is applied for the first order lines.

We scan the parameter space along the p-direction for various temperatures in the range of
0.5 < aT < 1.0 with the step size 0.05 to find the CEP and phase boundary. We analyse a peak of
the chiral and baryon susceptibilities. In the chiral limit, the chiral susceptibility does not have a
peak. Hence, we use the baryon susceptibility to find the TCP temperature because the location of
the TCP in the chiral transition is same as that of the CEP for the nuclear transition in the strong
coupling limit (8 = 0). For finite quark masses, the chiral susceptibility has a peak. So, we obtain
the CEPs and phase boundaries separately from the chiral and nuclear transitions. We use the
standard finite scaling method to find the temperature of the CEP. We compare the peak heights of
the different lattice volumes, they are rescaled by the CEP exponents. By the standard method, the
peak heights of the different lattice volumes become equal at the temperature (a7};) of the CEP.

To obtain the critical chemical potential a, 1., we analyse the peak position of the chiral and
baryon susceptibilities. For the chiral transition in the chiral limit, we obtain the critical chemical
potential a, 1. from the crossing points between the different lattice volumes because the chiral sus-
ceptibility does not have a peak. For other cases, we obtain the peak position using the following
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(a) Fit to the Breit-Wigner with polynomial (b) Extrapolation to Thermodynamic limit

Figure 2: The left panel shows the Breit-Wigner fit to find the peak position. The right panel shows the
extrapolation to the thermodynamic limit for various quark masses in fixed temperature a7’ = 0.7.

way. First, we fit a peak of the susceptibility using the Breit-Wigner function with polynomial to
find the peak position. The red lines in Fig. 2(a) are the peak position with fitting errors. After
we get the a, 1., we do the extrapolation to the thermodynamic limit to eliminate the volume de-
pendency. The results of extrapolations have very linear behavior with respect to 1/V as shown in
Fig. 2(b).
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Figure 3: The chiral and baryon susceptibilities in the chiral limit. In the case of chiral susceptibility, we
apply the finite size scaling with p = 1.962 for the 2nd order in the third panel, and p = 3 for the 1st order
transition in the first panel. For the baryon susceptibility, we apply p = 1 for crossover transition in the forth
panel, and p = 3 for the Ist order transition in the second panel.

First, we address the results in the chiral limit comparing the 1st order lines from the nuclear
and chiral transition. We plot the chiral and nuclear susceptibilities in Fig. 3. For the chiral tran-
sition at a7’ = 0.95, we use the O(2) exponents for 2nd line. But the case of nuclear transition at
aT’ =0.95, crossover scaling p = 1 is applied. We apply finite size scaling with p =3 at a7’ = 0.7
for both chiral and nuclear transitions because they are belonged in the temperature of 1st order
transition.

If we turn on the quark mass, the chiral susceptibility has a peak. We plot the chiral condensate
and susceptibility for finite quark mass in Fig. 4(a). The baryon density and susceptibility for finite
quark mass are plotted in Fig. 4(b). For the lower panels in Fig. 4(a) and Fig. 4(b), the Z(2)
exponents are applied. Then, the order of peak heights at a7’ = 0.725 and those at aT’ = 0.75 are
opposite. Hence, we find that the temperature of the CEP is located between 0.725 < aT’ < 0.75.
The phase boundaries for finite quark masses are obtained from the peak analysis explained above.
In the Table 1, our results of CEPs are agree with the previous Monte Carlo results for various
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(a) Chiral transition (b) Nuclear transition

Figure 4: The figure (a) shows the chiral condensate and the chiral susceptibility for finite quark mass
mg = 0.05 near the critical end point temperature. The data is more noisy than those of nuclear transition
due to the monomer fluctuations. The figure (b) shows the baryon density and the baryon susceptibility for
finite quark mass m, = 0.05 near the critical end point temperature.

quark masses. We also compare the results to the Mean Field results in Table 1.

amg,  Previous MC(aTf, apy)  MeanField(aTf, apy)  Ours(aTf, apy) Ours(aTg, alig)
0.00  0.94(7), 0.64 7002 0.866, 0.577 0.83(3), 0.6671(2)  0.69(3), 0.5563(2)
001 0.77(3),0.70(2) 0.764, 0.583 0.78(3), 0.7005(5)  0.66(3), 0.5906(4)
002 N/A N/A 0.75(3), 0.7234(14)  0.64(3), 0.6137(12)
005 N/A 0.690, 0.617 0.73(3), 0.7808(5)  0.62(3), 0.6653(4)
0.10  0.69(1), 0.86(1) 0.646, 0.653 0.70(3), 0.8606(10)  0.60(3), 0.7386(9)

Table 1: We compare our results of CEPs for various quark masses to the previous Monte Carlo results [3]
and Mean Field results [8]. The forth column shows the results when we apply the correct anisotropy & (7).

3.3 Phase diagram for finite quark masses

Finally, we obtain the phase diagram for finite quark masses. We plot the phase diagrams
applied £’(y) = ¥* and &(y) in the first and second panels in Fig. 5. When we apply the &’(7),
they have back-bending in the low temperature region. This is because for ¥ < 1 spatial dimers
are favored, which results in an unphysical phase boundary. However, the back-bending disappears
when the correct non-perturbative result &(y) is applied. The third panel shows the trajectory of
CEPs and those of mean-field theory [8]. The x-axis (amq)z/ 3 in this panel is suggested by tricritical
scaling. Due to the correct non-perturbative anisotropy & (y), the mismatch with mean-field theory
has been enlarged. Just as a7 differs between Monte Carlo and mean-field theory, also the slope
in (am,)?/ differs.

4. Conclusion

We obtain the phase boundary and critical end points for various quark masses using Monte
Carlo simulation in the dual representation. We extend the 1st order phase boundary to the lower
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Figure 5: The first and second panels are the phase boundary of chiral and nuclear transition for finite

quark masses. In the first panel, we apply the &’(y) = ¥? for anisotropy. They have back-bending at the

low temperature region. In the second panel, we apply &(7y) obtained from non-perturbative calculation.
After we apply the correct anisotropy, the back-bending has disappeared. The third panel is the trajectory of
critical end points (from & (7y) and £’(y)) and those of mean-field theory.

temperature than the previous Monte Carlo results. As expected, both the nuclear and chiral 1st
order transitions are on top also for m, > 0. By applying the non-perturbative results for ai, =&(y),
we confirm the disappearance of back-bending for all quark masses.
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