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1. Introduction

Since relativistic hydrodynamics is quite successul in the interpretation of heavy ion experi-
ments [1], it would be of great interest to calculate the shear viscosity of the quark gluon plasma
from first principles. One possible route to determine the viscosity is through the Kubo-formula,
relating transport coefficients to the zero frequency behavior of spectral functions:

η(T ) = π lim
ω→0

lim
k→0

ρ12,12(ω,k,T )
ω

, (1.1)

(1.2)

paired with the inversion of the integral transformation:

Cµν ,ρσ (τ,p) =
∫

∞

0
dωρµν ,ρσ (ω,p,T)

cosh(ω (τ−1/(2T)))
sinh(ω/(2T))

, (1.3)

relating the Euclidean correlators of the energy-momentum tensor
〈
TµνTρσ

〉
calculable on the lat-

tice to the spectral function appearing in the Kubo formula. Calculations of this kind face great
difficulties, as can be clearly seen from Figure 1, that illustrates why this inversion is a well-known
ill-posed problem. The inversion being such a hard problem, it is very important that at least the
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Figure 1: To illustrate the insensitivity of the Euclidean correlators to the IR features of spectral functions,
we show the different spectral functions, with the same UV, but different IR features. The corresponding
viscosities are different by a factor of 10, but the Euclidean correlators differ by less than 1%. Therefore to
have any chance of estimating the viscosity a high precision on the correlators is of great importance.

input information on the correlators is reliable. It is also well known that the stess-energy tensor
correlators have a severe sign problem in lattice gauge theory. This for the quenched case has a so-
lution in the multilevel algorithm [2]. This algorithm depend crucially on the locality of the action,
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and therefore it is hard to generalize for dynamical fermions. Some progress in the regard has been
made recently in [3]. Nevertheless, at least in the quenched case, high statistical precision can be
achieved with the multilevel algorithm.

Some progress in the problem of viscosity have also been made by H. Meyer [4, 5, 6]. Of
particular importance is the following. The following Ward identity:

−ω
2
ρ01,01 = q2

ρ13,13,

shows that the UV behavior of ρ01,01 is milder, only ω2 unlike the ω4 behaviour of ρ13,13. This
means less UV contamination of the IR signal, and therefore an easier inversion of the integral
transform. The thermodynamic identity −C01,01(τ,q = 0)/T 5 = s/T 3 however means we need
nonzero momenta to obtain information about the viscosity using this correlator.

In this conference contribution, we look at the continuum extrapolation of the relevant corre-
lators C01,01 and C13,13 in the quenched theory, since the cut-off effects on previous studies were
largely unknown, and as we argued, a great precision on the correlators is very important in this
area.

2. Lattice details

For our study, we use anisotropic lattices, with renormalized anisotropy: ξR = 2. For anisotropy
tuning we use the Wilson flow technique introduced in [7]. We use the multilevel algorithm to
reduce errors near τT = 0.5, and the Tree level Symanzik improved gauge action to reduce cut-
off effects. We use the clover discretization of the energy momentum tensor, maily because the
center of the operator is always on a site, therefore the separation is always an integer in lattice
units. We have ensembles at two different temperatures: 1.5Tc and 2Tc, and the following lattice
geometries:80×202×20, 64×162×16, 48×122×12, 40×102×10. The long direction is needed
so that we can have small spatial momenta, to use hydrodynamics prediction for our fits.

2.1 Anisotropy tuning

The bare anisotropy ξ0(β ) is tuned so that χR ≡ 2. For the tuning we define a spatial and a
temporal w0 scale[7]:

[
τ

d
dτ

τ
2〈Ess(τ)〉

]
τ=w2

0,s

= 0.15 , (2.1)[
τ

d
dτ

τ
2〈Ets(τ)〉

]
τ=w2

0,t

= 0.15 , (2.2)

with

Ess(τ) =
1
4 ∑

x,i6= j
F2

i j(x,τ) , (2.3)

Est(τ) = ξ
2
R

1
2 ∑

x,i
F2

i4(x,τ) . (2.4)

The tune the anisotropy we need to perform simulations with several bare anisotropies and
interpolate to the value where w0,s = w0,t is satisfied.
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Figure 2: Anisotropy tuning with simulations at different bare anisotropies.

2.2 Renormalization

The overall constant Zts
6 can be determined form the thermodynamic identity:

C01,01(τ,q = 0)/T 5 = s/T 3

For the renormalization of C13,13, we will use shifted boundary conditions. The bare energy
momentum tensor requires multiplicative renormalization, with separate factors of the sextet, triplet
and singlet components.

T R
µν = Z6T [6]

µν +Z3T [3]
µν +Z1(T

[1]
µν −T [1]

µν (T = 0))

with the definitions (no sum over µ and ν):

T [6]
µν =

1
g2

0
∑
σ

Fa
µσ Fa

νσ

T [3]
µν = δµν

1
g2

0

{
∑
ρ

Fa
µρFa

νρ −
1
4 ∑

ρ,σ

Fa
ρσ Fa

ρσ

}

T [1]
µν = δµν

1
g2

0
∑
σ ,ρ

Fa
ρσ Fa

ρσ

We use the clover definition of Fa
µν and define our correlators from the sextet (off-diagonal)

components. In the presence of an anisotropy Z6 splits into three different renormalization con-
stants:

T01 =
Zts

6

g2
0

Fa
02Fa

12 +
Zts

6

g2
0

Fa
03Fa

13

T12 =
Ztt

6

g2
0

Fa
01Fa

02 +
Zss

6

g2
0

Fa
13Fa

23
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For an isotropic gauge action the renormalization constants have been worked out with shifted
boundary conditions in [8]. Using shifted boundary conditions with shift vector ~ξ = (ξ1,ξ2,ξ3) =

(1,1,1) the off-diagonal T0i components develops a non-vanishing expectation value. Since the
directions are equivalent, requiring T01 = T02 = T03 gives:

2Ztt
6

1
g2

0
Fa

02Fa
12 = 2Zss

6
1
g2

0
Fa

03Fa
13 = Zst

6
1
g2

0
(Fa

01Fa
21 +Fa

03Fa
23)

Therefore the ratios Zss
6 /Zts

6 and Ztt
6 /Zts

6 can be calculated from a single simulation with L−1
0 =√

1+ |~ξ |2T = 2T .
Thus, e.g. to renormalize Tµν in a Nτ = 12 simulation with ξR = 2, we make an auxilliary run

on a 48×96×48×3 lattice with the same bare parameters. The resulting factors will depend on
β and Nτ , and the method requires that Nτ/4 is an integer. We observe an 1/N2

τ scaling. For the
renormalization of Nτ = 10 we can interpolate in Nτ .

3. Results on the correlators

Some renormalized correlators can be seen in Figure 3. Continuum limit extrapolations at the
middle point τT = 1/2 can be seen in Figure 4. As can be seen, for C13,13 we found cut-off errors
of approx. 3% for Nt = 16 at τT = 1/2. Thus, by contemplating Figure 1, it is easy to see that
the loss of precision from not doing a continuum extrapolation of this quantity could potentially be
fatal for the estimate of the viscosity.
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Figure 3: Renormalized correlators 〈T13T13〉 at zero spatial momentum and different lattice spacings(left)
and renormalized correlators 〈T01T01〉 for Nt = 16 and different spatial momenta(right). Both are at T =

1.5Tc.

4. Esimation of the viscosity

To fit the spectral function we will use and ansatz that use the prediction of hydrodynamics at
low ω [9]:

−
ρ
(hydro)
01,01

ω
=

η

π

q2

ω2 +(ηq2/(sT ))2 , (4.1)
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Figure 4: Continuum limit extrapolations at the point τT = 1/2 for 〈T13T13〉(left) and 〈T01T01〉(right).

and leading order perturbation theory at high frequency [5]:

−ρ
(pert)
01,01 =

dA

8(4π)2 q2(ω2−q2)I ([1− z4],ω,q,T ) (4.2)

I ([P[z]],ω,q,T ) =θ(ω−q)
∫ 1

0
dz

P(z)sinh(ω/2T )
cosh(ω/2T )− cosh(qz/2T )

+ (4.3)

+θ(−ω +q)
∫

∞

1

−P(z)sinh(ω/2T )
cosh(ω/2T )− cosh(qz/2T )

(4.4)

where we only take the part ω > q, since the ω < q part described the transport properties of a
free gas of gluons, which we substitute with the ansatz from hydrodynamics(strong coupling). Our
ansatz assumes the hydrodynamic prediction for the spectral function, strictly only valid for ω� T ,
can be extended to higher frequencies. This is true for N = 4 SYM theory, where AdS/CFT can
be used to calculate the spectral function[9]. Our ansatz can not produce a quasiparticle peak, that
would appear in weak coupling treatements of QCD, like kinetic theory [10, 11]. Also, our ansatz
only has two parameters: C and η/s. C describes the extent to which the leading order prediction
for the UV part of the spectral function gets changes, while η/s is the transport coefficient we want
to estimate.

We present two different fits. First we use C0101 as a function of τ and q at Nt = 16. The choice
of channel is motivated by the smaller cut-off errors compared to C1313. Out preliminary results
are:

T η/s C
1.5Tc 0.18(2)(2)(?) 0.69(3)(0)(?)
2.0Tc 0.16(2)(3)(?) 0.72(6)(0)(?)

Here the first error is statistical only. The second error is systematic error coming from the choice
of τmin and qmax. The (?) is stand-in for unkown sytematic errors coming from the choice of
the ansatz. For the second fit we use the q3/(π/4) = 0,1,2 dependence of C0101(τT = 0.5) and
C1313(τT = 0.5) in the continnum. Our results are:

T η/s C
1.5Tc 0.13(2)(?) 0.67(2)(?)
2.0Tc 0.11(2)(?) 0.72(3)(?)
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This is the first estimate of η/s using continuum extrapolated data. It is nevertheless consistent
with earlier estimates [4, 12].
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