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We study generic properties of strongly interacting matter at finite density as relevant to heavy-ion
collisions at moderate beam energies or the physics of neutron stars and their mergers. Because of
the fermion-sign problem in lattice QCD, here we simulate QCD-like theories without this prob-
lem at finite density. These theories (two-color QCD, G2-QCD, . . . ) typically contain bosonic
baryons, for example diquarks. It is therefore important to understand the effects of such bosonic
matter and disentangle them from fermionic baryons where they exist to draw conclusions for
QCD. Simulations of these theories, for instance G2-QCD, reveal an interesting and rich phase
diagram at zero temperature. Many open questions arise, partly due to the lack of high precision
or large volume/continuum data. This is the reason why we study two-dimensional QCD-like
theories. In this contribution we shall discuss differences between QCD-like theories at baryon
chemical and isospin chemical potential. Furthermore we present simulation results on the phase
diagram and spectroscopy at finite density for G2- and two-color-QCD and compare it to free
lattice fermions.
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1. Introduction

Although there is a lot of progress in understanding the QCD phase diagram from lattice sim-
ulations of QCD at finite baryon density (complex langevin, etc. . . ) [1] and functional methods like
the FRG method [2], QCD-like theories still play an important role to understand various aspects of
the phase diagram as for instance chiral symmetry breaking, deconfinement, diquark condensation
or the transition from the vacuum to nuclear matter. QCD-like theories replace the fundamental
SU(3) fermions by fermions in a different representation or gauge group in order to have a non-
negative fermion determinant [3]. The most important QCD-like theories are adjoint QCD [4],
two-color QCD, that has been studied with much effort in the last years [5, 6], and G2-QCD [7].
All of them share different aspects with QCD, but also have their shortcommings. While two-color
QCD contains only bosonic baryons, and is therefore an ideal setup to study diquark condensation,
it is not suitable to investigate the nuclear matter transition of QCD. G2-QCD features bosonic
as well as different kinds of fermionic baryons, but it is difficult to disentangle their effects in
the phase diagram. Furthermore from a computational point of view it is much more expensive.
This is one reason why we compare high precision simulations of two-color QCD and G2-QCD in
1+1 dimensions at finite baryon density. Although there is no spontaneous symmetry breaking in
two dimensions, in a finite volume these theories resemble their four-dimensional versions quite
well. Another important question is whether the fermion sign problem of QCD is important for the
physics at non-vanishing baryon density or whether these QCD-like theories are more similar to
QCD with isospin chemical potential.

A sufficient condition for a real fermion determinant is to demand an additional (anti-) unitary
symmetry for the dirac operator with real baryon chemical potential D(µ) [3],

T D(µ) = D∗(µ)T , T ∗T =±1 , T †T = 1. (1.1)

Under this condition, the fermion determinant for two mass degenerated fermion flavours is always
non-negative,

detD(µ)detD(µ) = detD(µ)detD∗(µ) = det
(
D(µ)D†(µ)

)
≥ 0 (1.2)

and standard Monte-Carlo simulations at finite baryon chemical potential are applicable to inves-
tigate the phase diagram at finite density and temperature non-perturbatively. For T ∗T = −1,
the fermion determinant for a single flavour is already non-negative, and simulations with a sin-
gle flavour are possible, for instance four-dimensional G2-QCD. For QCD-like theories with γ5-
hermiticity, i.e. D(µ) = γ5D†(−µ)γ5, the fermion determinant at isospin chemical potential is also
non-negative,

detD(µ)detD(−µ) = detD(µ)detD†(µ) = det
(
D(µ)D†(µ)

)
≥ 0 (1.3)

such that for theories with both symmetries the two-flavour partition functions for baryon and
isospin chemical potential are the same, i.e. Z(µB) = Z(µI). Therefore the phase diagrams at
isospin and baryon chemical potential are also identical under the following mapping for the up-
and down-quark content (u,d) in observables:

(u,d) 7→ (u,T γ5d̄T). (1.4)

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
0
7
8

Two-dimensional QCD-like theories Björn H. Wellegehausen

This symmetry changes the fermion number of an operator, for instance it relates mesons and di-
quarks, and is not allowed in QCD where it breaks gauge invariance. This observation suggests that
these theories might have more in common with isospin QCD than with QCD at baryon chemical
potential. In this paper we consider two-color QCD and G2-QCD.

Two-color QCD, QCD with fermions in the fundamental representation of SU(2), contains
only bound states with an even quark number. These are either mesons or bosonic baryons like for
instance diquarks with fermion number two. In contrast to QCD, fermionic baryons are forbidden
by gauge invariance. The antiunitary symmetry is related to the operator T =Cγ5×σ2 with charge
conjugation matrix C and σ2 acting on colour space. The mapping between the lightest bilinear
bound states is shown in Table 1(left).

nq Particle d↔ T γ5 d̄T Particle nq

0 η ↔ η 0
0 f ↔ f 0
0 π0 ↔ π0 0

0 π± ↔ d+
± 2

0 a± ↔ d−± 2

nq Particle d↔ T γ5 d̄T Particle nq

1 H ↔ H 1
1 Ñ ↔ N 3
1 ∆̃++,+,− ↔ ∆̃++,+,− 1
1 ∆̃0 ↔ ∆0 3
3 ∆++,+,− ↔ ∆++,+,− 3

Table 1: Mapping between bilinear bound states (left) and fermionic baryons (right) under the (anti-)unitary
symmetry (charge conjugation).

In G2-QCD we replace the fundamental SU(3) fermions by fermions in the fundamental 7-
dimensional representation of the execptional Lie group G2. In this case the operator T is given by
T = Cγ5×1. In addition to the bound states of two-color QCD and QCD, it also contains quark-
gluon hybrids (H) and quark-meson bound states (Ñ, ∆̃), see [7]. Their relation under down-quark
charge conjugation is shown in Table 1(right). Coupled to a Higgs field in the fundamental repre-
sentation, this theory reduces to isospin QCD for a non-vanishing Higgs field vacuum expectation
value, indicating that the theory shares many aspects with isospin QCD.

2. G2-QCD in 4 dimensions

The phase diagram of G2-QCD on a rather small Nt × 83 lattice is shown in Figure 1 (left). Con-

0

50

100

150

200

250

300

0 100 200 300 400 500 600

T
in

M
eV

µ in MeV

L
at

tic
e

sa
tu

ra
tio

n

?

conf

deconf

va
cu

um

di
qu

ar
k

co
nd

nu
cl

ea
r

m
at

te
r

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400

Nq

µ in MeV

d+
0

d−0

∆
+
3
2

∆
−
3
2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 2 4 6 8 10 12 14 16 18

Nq

µ = 224 MeV
µ = 230 MeV
µ = 236 MeV

Figure 1: Left: Phase diagram of four-dimensional G2-QCD on a Nt × 83 lattice at β/Nc = 0.96 and
κ = 0.159. Center: Quark number compared to diquark and nucleon masses m/nq. Right: Histogram of
the quark number around the first order transition.
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finement and deconfinement phase are seperated by a crossover at Tc(µ = 0) ≈ 137 MeV. With
increasing chemical potential, the transition shifts to smaller temperatures as expected from recent
QCD calculations [8]. The quark number Nq for our smallest temperature T ≈ 36 MeV (Fig. 1,
center) shows an onset transition to Nq = 2 close to half of the mass of the lightest diquark fol-
lowed by various transitions at larger values of chemical potential. Most of these transition lead to
a plateau in the quark number that can possibly be mapped to an appropriate distribution of baryons
on the finite number of lattice sites. The first two transitions at µ ≈ 110 MeV and µ ≈ 170 MeV are
related to diquarks with positive and negative parity and the quark number seems to be a continuous
function. At µ ≈ 230 MeV we observe probably a first order transition in the quark number which
can be seen as a jump in the density and a phase coexistence in the corresponding histograms of
the quark number (Fig. 1, right). Unfortunately within given statistical errors, we cannot decide
whether the jump in the quark number is even or odd and therefore related to bosonic or fermionic
baryons. This is the reason why we investigate two-dimensional QCD-like theories where we can
perform high-precision simulations that may help to understand the behaviour in four dimensions.

3. Free lattice fermions

First we show some results for free lattice Wilson fermions in two dimensions. In order to mimic
diquark bound states, we project the partition function for free fermions Z(µ) onto an ensemble
with even quark number,

Zeven(µ) =
1
2
(Z(µ)+Z(µ− iπT )) . (3.1)

This corresponds to the sum of ensembles with periodic and anti-periodic boundary conditions in
temporal direction. The quark number and the chiral condensate, shown in Figure 2, are given by
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Figure 2: Quark number (left) and chiral condensate (right) for free Wilson fermions and different temporal
lattice sizes. The κ parameter is tuned such that the first onset transition takes place at µ = 100 MeV.

derivatives with respect to µ and m,

Nq = T
d lnZeven(µ)

dµ
, Σ =

1
V

d lnZeven(µ)

dm
. (3.2)

In the zero temperature limit, the quark number increases by steps of two until the lattice is com-
pletely filled with 8 diquarks with increasing relative momentum. The length of the plateaus is
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related to the spatial size of the lattice such that in the infinite volume limit the quark number is
continuously increasing. Whenever a diquark is put on the lattice, the chiral condensate decreases.

4. Two-Color QCD in two dimensions

The simulations for two-color QCD have been performed on a Nt × 16 lattice with Nt = 2 . . .128
at fixed gauge coupling β/Nc = 1.9 and hopping parameter κ = 0.273. Physical units are set
by the pion mass mπ = 200 MeV at Nt = 32, leading to a lattice spacing of a = 0.26(4) fm.
This corresponds to temperatures between T ≈ 6 MeV and T ≈ 385 MeV. For this ensemble, the
lightest bound state is the positive parity vector diquark with mass md+

1
≈ 177 MeV, followed by the

scalar diquark with mass md+
0
= 200 MeV and the a-meson with mass ma ≈ 254 MeV. The results

for the quark number and chiral condensate are shown in Figure 3. With decreasing temperature
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Figure 3: Quark number per flavour (left) and chiral condensate (right) for two-color QCD on a Nt × 16
lattice.

the onset transition to diquark matter at half of the mass of the lightest baryon becomes more
pronounced. The chiral condensate decreases significantly and we expect a diquark condensate to
be formed. The first onset transition is followed by various transitions where the quark number
always increases by two. In contrast to free fermions, we can put diquarks with different relative
momenta or different kinds of diquarks on the lattice. All these transitions show also up as a
small drop in the chiral condensate. When the lattice saturates at Nq = Ns Nc = 32, the chiral
condensate decreases to its quenched value. The phase diagram for the Polyakov loop and the
chiral condensate are shown in Figure 4 (left and center). Qualitatively, they agree with the phase
diagram obtained in four dimensions, but at very low temperatures, the Polyakov loop is always
zero in contrast to results with Wilson fermions at the smallest temperatures in four dimensions
[6]. In simulations with staggered fermions, the Polyakov loop is always zero below Tc(µ) [6],
indicating that discretization effects already become important well below half filling. At finite
density correlation functions of bound states with fermion number nq can be fitted to

C(µ,nq)∼ ae−ε−(µ,nq)+beε+(µ,nq) with ε
±(µ,nq) = m(µ) ± nqµ. (4.1)

For the lightest diquarks and mesons, the function ε− is shown in Figure 4 (right). The correlation
function is fitted with 2,3 or 4 exponential factors for the ground- and excited states at Nt = 32.
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Figure 4: Polyakov loop (left) and chiral condensate (center) for two-color QCD on a Nt × 16 lattice and
diquark and meson masses in two-color QCD at finite chemical potential (right)

As expected, below the critical µc ≈ 90 MeV the diquark masses do not depend on the chemical
potential and ε− is a linear function with slope nq = 1. Close to the onset, the scalar diquark tends
to become lighter than the vector diquark and the pion mass decreases. Above the onset, the meson
masses increase as m ∼ µ while the vector diquark mass vanishes. The scalar diquark becomes
again heavier than the vector diquark, but its mass does almost not depend on chemical potential.
The mass of the a-meson decreases already before the critical µc, indicating that finite temperature
effects might be important (a similar behaviour is seen in the chiral condensate at Nt = 32).

5. G2-QCD in two dimensions

The simulations for G2-QCD are done on a Nt×16 lattice at β/Nc = 3.1 and κ = 0.275. Again, the
physical scale is set by the pion mass mπ = 200 MeV, leading to a lattice spacing of a ≈ 0.16 fm
and temperatures from T ≈ 20 . . .633 MeV. The lightest particle is again the vector diquark with
mass md+

1
≈ 194 MeV, followed by md+

0
= ma ≈ 262 MeV, the nucleon masses mN+ ≈ 380 MeV,

mN− ≈ 506 MeV and the hybrid mass mH ≈ 440 MeV. The results for the quark number and the
chiral condensate at the lowest temperature T ≈ 32 MeV are shown in Figure 5 (left). Similar to
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Figure 5: Quark number per flavour and chiral condensate for G2-QCD on a 64×16 lattice

two-color QCD, various transition show up in the quark number and the condensate, the first close
to half of the vector diquark mass, but the increase in quark number is not always two. The lattice is
filled with combinations of diquarks, nucleons and hybrids and with the present data it is impossible
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to understand every transition. At small densities, two plateaus in the quark number show up, the
first at Nq = 3 and the second at Nq = 7 (Figure 5, right). A plateau at Nq = 2 is not visible,
maybe because the transition to diquark matter at µc ≈ 95 MeV is influenced by the transition to
nuclear matter. We expect that a plateau at Nq = 2 will show up at smaller temperatures. Another
explanation might be that after the first onset the nucleon mass depends on chemical potential. First
results here indicate indeed, that the nuclear mass decreases with chemical potential close to µc.
The phase diagram, Figure 6, looks very similar to the two-color phase diagram.
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Figure 6: Polyakov loop (left) and chiral condensate (right) for G2-QCD on a Nt ×16 lattice.

6. Conclusions

High precision simulations of QCD-like theories in two dimensions at finite density show many
features that are also expected in four dimensions. It turns out, that the phase diagrams of G2-QCD
and two-color QCD are very similar. In order to disentangle effects from bosonic and fermionic
bound states in the density, simulations at very low temperatures (much lower than the achieved
temperatures in four dimensional G2-QCD) are necessary. Whether their phase diagrams are sim-
ilar to QCD at baryon chemical potential is still unclear, at least these theories share important
feature with isospin QCD.
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