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Motivated by the hadronization properties of heavy-ion collisions, we study the thermalisation
properties of field theories. First of all, we present our recent observations regarding the local
energy-density and momentum distributions in the classical Φ4 theory. As this theory exhibits
interesting features regarding these questions, we continue the research by the MC simulation of
the SU(3) Yang-Mills theory and we intend to investigate further in more complicated theories.
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1. Introduction

It is well-known from experiments, that the matter formed in relativistic heavy-ion collisions
behave as a nearly ideal liquid and the shear-viscosity (η) over entropy-density (s) ratio is ex-
tremely small [1]. In a liquid-like matter where information is spread by diffusion and the transport
coefficient so small, interactions can no longer be neglected. On one hand, strong interactions make
difficult to describe hadronization processes, on the other hand, interesting phenomena may occur.

One of such curiosities is related to the transvers momentum (pT ) histograms. One may an-
ticipate that the pt distribution of particle yields is Boltzmannian. However, it seems not to be
correct in p-p collisions according to ALICE, CMS, STAR and PHENIX collaborations, respec-
tively [2][3][4][5]. Instead of Boltzmannian, the Tsallis-distribution is proposed.

Figure 1: Transverse momentum distribution for K0
S as measured by the CMS collaboration [7]. The 0.9 TeV

data is compared to the Tsallis-B distribution (continuous full line) by J. Cleymans and D. Worku in [6].

What can be the reason of the discrepancy between the expected and measured distribution
functions? It can be of statistical origin: if hadron multiplicity fluctuates according to negative-
binomial distribution, then the pT distribution is Tsallis-like even if the event-by event distribution
is Boltzmannian [8].

Hunting for a microscopic mechanism, we should understand the radiation of a strongly inter-
acting plasma. If hadrons are created locally, then the creation probability must depend on the local
energy-density. This is a measurable quantity, since one can extract the local energy-density dis-
tribution from computer simulations, thus we may have a tool to determine the hadron distribution
function. We put the concept into action with various toy models, namely the SU(3) Yang-Mills
theory and the classical Φ4 theory.

2. Local energy-density distribution

As stated in the introduction, our aim is to determine the local energy-density distribution. In
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this section we recall some basic definitions of probability theory.
First of all, let X be a stochastic variable. The indicator of X being in the [x,x+∆x] interval is

I[x,x+∆x](X). The expectation value of this indicator equals the probability of X being in the interval:

〈I[x,x+∆x](X)〉= P(X ∈ [x,x+∆x]). (2.1)

Let f (x) note the probability density function of X . By definition:

f (x) = lim
∆x→0+

P(X ∈ [x,x+∆x])
∆x

. (2.2)

If we write (2.1) into the definition (2.2) of f (x), then we get a Dirac-δ approximation and we can
write rather formally:

f (x) = 〈δ (X− x)〉. (2.3)

In this work, the quantity in question – in other words the stochastic variable – is the local energy
density εx where x is an arbitrary space-time coordinate. With this (2.3) becomes:

P(ε) = 〈δ (εx− ε)〉. (2.4)

However, (2.4) is sometimes confused by a different energy-distribution. Let A(Φ(t),Π(t))
be a local physical quantity, where Φ(t) and Π(t) are some field and momentum field variables
depending on time t. The ensemble average of A is the following:

〈A(Φ(t),Π(t))〉=
∫

DΦ̄DΠ̄A(Φ̄,Π̄) f (Φ̄,Π̄), (2.5)

where f (Φ̄,Π̄) is a probability density function as well. The two distributions can be connected by
the following train of thought. If we are interested in the expectation value of whether εx takes on a
certain value ε , then we can formally substitute A with δ (εx−ε) in equation (2.5). Finally, we get:

〈δ (εx− ε)〉=
∫

DΦ̄DΠ̄δ (εx− ε) f (Φ̄,Π̄). (2.6)

The left hand side of the equation (2.6) is the local energy-density distribution which we want to
determine from our simulations. On the right hand side, we have the distribution function f (Φ̄,Π̄)

of the ensemble (e.g. Boltzmannian for canonical ensemble), which is dependent on the total
energy of the system through the field variables Φ and Π.

The main point is that these two distributions are not necessarily the same, although they
sometimes coincide. As a result, it is possible in a Monte Carlo simulation, that the local energy-
density distribution is not Boltzmannian while the configurations are still generated by Boltzmann-
distribution.

In the following sections, we consider the real time simulation of the classical Φ4 theory in
3 dimensions and perform a standard Monte Carlo simulation with heat-bath algorithm for the
Euclidean SU(3) gauge theory.
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3. A toy model: classical Φ4 theory

Our first toy modell is the well-known classical Φ4 theory. One of the advantages of classical
theories is that we can perform real-time simulations by successively solving the canonical equa-
tions and we can calculate physical quantities that are hardly accessible in other methods. One of
such examples is the shear-viscosity which is analized in [9].

The energy-density at a certain lattice coordinate of the 3D space (x) is given by the Hamilto-
nian of the system. The discretized form is the following:

εx =
1
2

Π
2
x +

1
2
(∇Φ)2

x +
m2

2
Φ

2
x +

λ

24
Φ

4
x. (3.1)

We note, that the total energy of the continuous theory is constant and our simulation algorithm
preserves this property.

The temperature (T ) of the system is calculated by the following formula [9]:

T =
1

2N3 〈|Πk|2〉, (3.2)

where N3 is the number of lattice sites and Πk is the Fourier-transformed momentum field. We use
this formula to check whether the system reached thermal equilibrium by verifying that 〈|Πk|2〉 is
independent of k (equipartition). It turned out, that we can distinguish two time scales, as higher
modes thermalise much faster than low ones. After 10000 time steps, the system can be considered
fully thermalised.

4. Numerical results
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Figure 2: Local energy-density histogram with Boltzmann (blue line) and Tsallis (black line) fits on semi-
log scale after 17 time steps. Simulation with random initial condition for Πx. Data points are averaged from
50 simulations and shown with their standard error.

The results of our simulations for two different initial conditions on a 503 lattice are shown
in figures 2 and 3. It is clear, that at the beginning (after 17 time steps) the distribution is not
Boltzmannian, so we tried the following function as well:

P(ε) = a [1+(q−1)βε]
1

1−q . (4.1)
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Figure 3: Local energy-density histogram with simple power function (green line), Boltzmann (blue line)
and Tsallis (black line) fits on semi-log scale after 17 time steps. Simulation with secant hyperbolic initial
condition for Πx. Data points are averaged from 50 simulations and shown with their standard error.

It is the so-called Tsallis-distribution. Note that for q→ 1 it gives back the Boltzmann-distribution.
It turned out that Tsallis fits well for both cases.

However, in these cases the system is still far from equilibrium. The main question is that
whether the Boltzmann-distribution is restored with equilibrium or not, so we continue the analysis
for the time dependence of the q parameter on a much longer scale. Based on figure 4, one can con-
clude, that the q parameter remains consistently over one even after full thermalisation. Moreover,
the shape of the distribution does not significantly change after only a few 17-25 time steps. The
Tsallis-parameter takes its equilibrium value already in the pre-thermalised state (i.e. when only
higher modes are thermalised) within error. The average values on figure 4 are in the order of the
experimental values.
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Figure 4: Time dependence of the Tsallis parameter at 4 different total energies with various initial condi-
tions. The last points indicate the average values for each energies from 1000 to 45000 time steps.

As a comparison, we checked the momentum-distribution. Based on the equation (2.5) with
the same train of thought as for the energy-density one do expect Boltzmann-distribution for the
momentum. The result for the averaged data is qmomentum = 0.999±0.001 for random initial condi-
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tion and total energy E/N = 0.675. We have similar results for the other three settings, so we can
conclude that the momentum-distribution is Boltzmannian as expected. We got the same result for
403 lattice as well.

5. Euclidean SU(3) pure gauge theory with numerical results

Our second model is the quantum SU(3) Yang-Mills theory. The action of the model in Eu-
clidean formalism is the following:

SY M =
1
4

∫
d4xFa

µνFa
µν , (5.1)

where Fµν(x) = −igFa
µν(x)Ta is the gluon field strength tensor, Ta are the generators of the Lie-

algebra and g is the coupling constant.
We use the Wilson-action for the lattice formulation of the theory:

S[U ] = ∑
p

β

(
1− 1

N
ReTrUp

)
, (5.2)

where U(x+ µ,x) is the parallel transporter from lattice coordinate x to x+ µ and the plaquette
variable corresponding to x is Up =U(x,x+ν)U(x+ν ,x+ν +µ)U(x+ν +µ,x+µ)U(x+µ,x).
It is well-known that the Wilson-action corresponds to the continuum theory if one chooses β =

2N/g2 (in our case N = 3) and the connection between the parallel transporters and the gauge fields
is U(x,µ) = e−aAµ (x).

The local energy-density is now given by the plaquette energy:

ε =

〈
1− 1

TrI
TrUp

〉
. (5.3)

We use Monte Carlo simulation with the well-known heat-bath algorithm to determine the
distribution of ε . Our results are presented on graph 5. Tsallis f (x) = axn(1+(q− 1) l x)

1
1−q and

Boltzmann g(x) = AxNe−Bx fits are applied to the numeric data. The time-like size of the lattice
were Nt = 2 and the space-like was N3

s = 503.

6. Conclusions and outlook

In this work we have determined the local energy-density histogram of the classical Φ4 and
the quantum SU(3) Yang-Mills theory. We have found that the Boltzmann-distribution does not
fit well. However, the Tsallis-distribution is a good fit, similarly to experimental data. In case of
the classical Φ4 theory, a detailed analysis is performed and the q parameter is in the order of the
experimental values.

The q parameter for the SU(3) theory is currently under investigation, with similar analysis
as in the Φ4 theory. To accomplish this task, one needs to perform continuum limit and termody-
namical limit analysis. Furthermore, usually one must perform renormalisation as the energy gains
additive and multiplicative factors. However, the quantity in focus is not the value of the energy-
density, but only the shape of the local energy-density distribution (i.e. the q parameter) which we
do not expect to depend on this.
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Figure 5: Plaquette energy histogram on semi-logscale after 20 heat-bath sweeps at β = 8, Nt = 2, Ns = 50.
The blue line is the Boltzmann and the green line is the Tsallis fit.

Our main goal is to perform similar analysis for QCD as well and to compare the results with
experimental data.
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