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We make a detailed comparison between the direct method and the HAL QCD potential method
for the baryon-baryon interactions, taking the ΞΞ system at mπ = 0.51 GeV in 2+1 flavor QCD
and using both smeared and wall quark sources. The energy shift ∆Eeff(t) in the direct method
shows the strong dependence on the choice of quark source operators, which means that the
results with either (or both) source are false. The time-dependent HAL QCD method, on the other
hand, gives the quark source independent ΞΞ potential, thanks to the derivative expansion of the
potential, which absorbs the source dependence to the next leading order correction. The HAL
QCD potential predicts the absence of the bound state in the ΞΞ(1S0) channel at mπ = 0.51 GeV,
which is also confirmed by the volume dependence of finite volume energy from the potential.
We also demonstrate that the origin of the fake plateau in the effective energy shift ∆Eeff(t) at
t ∼ 1 fm can be clarified by a few low-lying eigenfunctions and eigenvalues on the finite volume
derived from the HAL QCD potential, which implies that the ground state saturation of ΞΞ(1S0)
requires t ∼ 10 fm in the direct method for the smeared source on (4.3 fm)3 lattice, while the
HAL QCD method does not suffer from such a problem.
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1. Introduction
Although Lüscher’s finite volume method [1] and HAL QCD method [2] are theoretically

equivalent and employed to study hadron-hadron interactions in lattice QCD [3, 4, 5, 6, 7, 8, 9, 10,
11], two methods give inconsistent results for two-baryon systems (see a review [3]).

Recently, we pointed out that the direct measurement of the two-baryon energy shift in Lüscher’s
method suffers from systematic uncertainties due to contamination of excited states [12, 13] that
plateaux in the effective energy shift ∆Eeff(t) disagree between smeared and wall sources. In this
talk, we clarify the origin of the fake plateaux in the direct method using the HAL QCD potential,
which is insensitive to source operators.

2. Formalism
2.1 Lüscher’s finite volume method

The energy shift of the two-body system in the finite volume L, ∆EBB(L) = EBB(L)− 2mB,
with the ground state energy of the two-baryon system EBB(L) and a single baryon mass mB, is
related to the phase shift δ (k) through the finite volume formula [1] as

k cotδ (k) =
1

πL ∑
~n∈Z3

1
|~n|2−|kL/(2π)|2

, (2.1)

where k is defined by ∆EBB(L) = 2
√

(mB)2 + k2− 2mB. The bound state is determined from the
pole condition, k cotδ (k) =−

√
−k2 at L→ ∞ 1.

In lattice QCD simulations, ∆EBB(L) is estimated by the plateau of the effective energy shift

∆Eeff
BB(t)≡ Eeff

BB(t)−2meff
B (t) =−1

a
log
(

RBB(t +a)
RBB(t)

)
, (2.2)

where RBB(t) ≡ CBB(t)/{CB(t)}2 with the two-baryon propagator CBB(t) ≡
〈
B(t)2B̄(0)2

〉
, the

baryon propagator CB(t)≡ 〈B(t)B̄(0)〉 and the lattice spacing a.

2.2 Difficulties in multi-baryon systems
Besides its significant computational cost, the multi-baryon systems in lattice QCD has the

signal to noise ratio problem, which becomes exponentially worse for A baryons as S(t)/N(t) ∼
exp [−A(mB− (3/2)mM)t], where mB and mM are the baryon and meson masses. In addition to
this, the direct method suffers from the contamination of elastic scattering states, whose energy
gap decrease as O(1/L2) as the volume increases. For example, a gap between the ground state
and the first ΞΞ scattering state is about 50 MeV at L = 4.3 fm in this study, which requires
(50 MeV)−1� t ∼O(10) fm for the ground state saturation.

As an instructive example [12] , let us consider the mock-up data as

R(t) = b1e−∆EBBt +b2e−(δEel+∆EBB)t + c1e−(δEinel+∆EBB)t , (2.3)

where ∆EBB = EBB−2mB, while δEel = E∗BB−EBB and δEinel = Einel−EBB for the excited states.
Fig. 1(a) shows the lines of ∆Eeff

BB(t)−∆EBB at δEel = 50 MeV and δEinel = 500 MeV, which are
typical values for the elastic and inelastic excitations, with c1/b1 = 0.01 and b2/b1 = ±0.1, 0.

1A systematic diagnosis of the phase shift of the previous studies [6, 7, 8] is discussed in Ref. [14]
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Without the elastic state (b2/b1 = 0), ∆Eeff
BB(t) converges to ∆EBB around t ∼ 1 fm within 1 MeV

of accuracy, while the ground state saturation requires t ∼ 10 fm even for the 10% contamination.
Figure 1(b) is the discrete data with fluctuations added. There appear plateau-like structures

around t ∼ 1 fm, which however are fake plateaux as seen in Fig. 1(a). This demonstrates a diffi-
culty in obtaining the ground state energy from a plateau-like structure in ∆Eeff(t) at t ' 1 fm.
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Figure 1: (a) The effective energy shift of the mock-up data. (b) A mock-up data with fluctuations.

2.3 HAL QCD method
Contrary to the direct method, the time-dependent HAL QCD method [9] utilizes all scattering

state below the inelastic threshold to extract the non-local potential U(~r,~r′) as[
1

4mB

∂ 2

∂ t2 −
∂

∂ t
−H0

]
R(~r, t) =

∫
d~r′U(~r,~r′)R(~r′, t) (2.4)

for t � (∆Wth)
−1, where the Nambu-Bethe-Salpeter (NBS) correlation function R(~r, t) is defined

as

R(~r, t)≡
〈
0|T{B(~x+~r, t)B(~x, t)J̄ (0)|0

〉
/{CB(t)}2 = ∑

n
Anφ

Wn(~r)e−∆Wnt +O(e−∆Wtht) (2.5)

with a source operator J , ∆Wn = Wn− 2mB with n-th energy eigenvalue Wn, and the inelastic
threshold ∆Wth = Wth− 2mB. Using the velocity expansion, U(~r,~r′) ' {V (~r)+O(∇2)}δ (~r−~r′),
the leading order potential is given by

V (~r) =
1

4mB

(∂/∂ t)2R(~r, t)
R(~r, t)

− (∂/∂ t)R(~r, t)
R(~r, t)

− H0R(~r, t)
R(~r, t)

. (2.6)

3. Lattice QCD measurements for ΞΞ interactions

We use 2+1 flavor QCD ensembles in Ref. [6], generated with the Iwasaki gauge action and
O(a)-improved Wilson quark action at a = 0.8995(40) fm, where mπ = 0.51 GeV, mN = 1.32 GeV
and mΞ = 1.46 GeV. For a comparison, we employ the wall source qwall(t) = ∑~y q(~y, t), which
is mainly used in the HAL QCD method, as well as the smeared source qsmear(~x, t) = ∑~y f (|~x−
~y|)q(~y, t) with f (r) ≡ Ae−Br,1,0 for 0 < r < (L− 1)/2, r = 0, (L− 1)/2 ≤ r, which is generally
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volume La # of conf. # of smeared sources (A,B) # of wall sources
323×48 2.9 fm 402 384 (1.0,0.18) 48
403×48 3.6 fm 207 512 (0.8,0.22) 48
483×48 4.3 fm 200 4×384 (0.8,0.23) 4×48
643×64 5.8 fm 327 1×256 (0.8,0.23) 4×64

Table 1: Simulation parameters. The rotational symmetry for isotropic lattice is used to increase statistics.

adopted for the direct method. Simulation parameters including (A,B) identical to those in Ref. [6]
are summarized in Table 1. In this report, we mainly consider ΞΞ(1S0) channel using the relativistic
interpolating operators, since ΞΞ(1S0) channel has smaller statistical errors but belongs to the same
SU(3) flavor representation of the NN(1S0).

3.1 Quark source dependence of the effective energy shift ∆Eeff
ΞΞ
(t)

Quark source dependence is an easy check against fake plateaux. We compare the effective
energy shift between the wall and smeared sources in Fig. 2 for ΞΞ(1S0) (Left) and ΞΞ(3S1) (Right)
on 483 lattice. While plateau-like structures appear around t = 15a for both sources, they disagree
with each other, implying that either plateau (or both) is fake. Repeating this analysis on other
volumes and taking L→ ∞ limit, we have found that the lowest energy state from the wall source
is the scattering state in both ΞΞ(1S0) and ΞΞ(3S1) channels, while that from the smeared source
turns out to be the bound state in the ΞΞ(1S0) channel but an unphysical state in the ΞΞ(3S1), which
has positive energy shift ∆EΞΞ(

3S1) > 0 in the infinite volume limit. These results bring serious
doubt on the validity of the energy shift in the previous works [6, 7, 8] 2. More detailed studies
including NN, 3He and 4He systems are found in Ref. [12].
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Figure 2: Examples of the effective energy shift plots at L3 = 483.

3.2 Quark source dependence of the HAL QCD potential

We similarly consider the source dependence of the HAL QCD potential. Fig. 3(a) and (b)
show the central potential VC(r) of ΞΞ(1S0) at L3 = 483 from smeared and wall sources, respec-
tively. While V wall

C (r) is stable against a variation of t from t = 11a to 15a within errors, V smear
C (r)

2The possibility of the fake plateau can be checked by the finite volume formula [14].
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has a weak t dependence and is slightly different from V wall
C (r) as seen in Fig. 3(c) at t = 15a though

the difference decreases as t increases.
Contrary to the direct method, the source dependence in the HAL QCD method give an extra

information, from which we can determine the next leading order of the derivative expansion as

V X
C (r)RX(r, t)≡

[
1

4m
∂ 2

∂ t2 −
∂

∂ t
−H0

]
RX(r, t) =VLO(r)RX(r, t)+VNLO(r)∇2RX(r, t) (3.1)

with X = wall, smeared. As seen in Fig. 3 (d), V wall
C (r) is a good approximation of VLO(r), so that

it gives reliable results at the low energy where VLO(r) dominates.

Figure 3: VC(r) of ΞΞ(1S0) for L3 = 483. (a) V smear
C (r) at t = 11,13 and 15 (b) V wall

C (r) at t = 11, 13 and
15. (c) a comparison between V wall

C (r) and V smear
C (r) at t = 15. (d) LO potential VLO(r) and V wall

C (r).

3.3 Anatomy of fake plateaux by the potential

While we have found no bound state in ΞΞ(1S0) channel from the Shrödinger equation with
the HAL QCD potential in the infinite volume, eigenvalues of H = H0 +V on the finite volume L
gives the finite volume ground state energy [10, 13]. Fig. 4(a) shows the volume dependence of the
lowest eigenvalue ∆E0 for L3 = 403,483 and 643 from the wall source potential V wall

C (r) at t = 14a
3, together with the linear extrapolation in 1/L3, which confirms the absence of the bound state in
the ΞΞ(1S0) at mπ = 0.51 GeV.

3The eigenvalues are consistent within errors from t = 11a to 15a.
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Furthermore, using several low-lying eigenfunctions Ψn(~r) with eigenvalues ∆En, we can de-
compose ΞΞ correlation functions as

∑
~r

Rwall/smear(~r, t)'∑
~r

∑
n

awall/smear
n Ψn(~r)exp(−∆Ent) = ∑

n
bwall/smear

n exp(−∆Ent) , (3.2)

where awall/smear
n are determined from the orthogonality of Ψn(~r). Fig. 4(b) shows the ratio |bn/b0|

as a function of the eigenvalue ∆En, which shows that the contamination of excited states. The
contamination from the first excitation with about 50 MeV at L3 = 483 is much smaller than 1%
for the wall source, while it is about 10% for the smeared source.
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Figure 4: (a) The volume dependence of the ground state eigenvalue ∆E0. (b) The contamination of excited
states |bn/b0|. Solid (open) symbol denotes a positive(negative) value.

Using the decomposition Eq. (3.2), we can reconstruct the effective energy shift ∆Eeff(t), as
shown in Fig. 5 (Left), where the reconstructed result, denoted by the gray (orange) band for the
wall (smeared) source is compared with the direct calculation. The plateau-like structure for both
sources is well explained by the reconstruction, while it is also shown that the ground saturation
for the smeared source requires t ∼ 100a' 10 fm [12].

The effective energy from ∑~r g(r)Rsmeared(~r, t) is plotted in Fig. 5 (Right), which shows the
strong sink operator dependence among g(r) = 1 (solid square), g1(r) (open square) and g2(r)
(open diamond), while we confirm the agreement among three for the wall source[12].

Plateaux of the effective energy shift from ∑~r Ψ0(~r)Rwall/smeared(~r, t), where Ψ0(~r) is the lowest
eigenstate at t = 14a on L = 48, on the other hand, agree between the wall (open down triangle) and
the smeared (open up triangle) sources in Fig. 5 (Right), where they also agree with that from the
wall source without Ψ0(r) (solid circle). This analysis demonstrates that the lowest eigenstate from
the potential is indeed correct, and one can extract the correct lowest energy in the direct method
once we know the eigenstate. In the present case, the wall source happens to give the correct lowest
energy within errors in the direct method, though this is not always the case.

We have shown that the direct measurement for the energy shift has strong source and sink
dependencies while the (time-dependent) HAL QCD method is free from these dependencies. We
also demonstrate that the origin of the fake plateau of the effective energy shift in the direct method
can be clarified by the lowest few eigenstates by using the potential on the finite volume.
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Figure 5: (Left) Reconstructions of ∆Eeff(t) from low-lying three eigenstates. (Right) Effective energy
shift from sink projection by g1(r) = 1−0.5e−0.2r, g2(r) = 1−0.9e−0.22r and Ψ0.
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