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1. Introduction

Tremendous progress has been made over the last few years in the calculation of resonance
properties from first principles using lattice QCD (LQCD). The present frontier is the determina-
tion of the properties of resonances coupling to multiple two-body channels. A recent example
is the study of resonances in Ref. [1]. This considers resonances coupling to both the πη and
KK channels, albeit with quarks that are heavier than physical. It uses a theoretical formalism—
a “two-particle quantization condition" generalized from seminal papers by Lüscher [2, 3]—that
relates the spectrum in a finite volume (FV) to the infinite-volume scattering amplitudes.

However, as the quark mass is lowered, an increasing number of resonances couple either
dominantly, or in part, to three-particle channels. Examples include ω → 3π , K∗ → Kππ and
N(1440)→Nππ as well as the recently discovered X , Y and Z resonances. If we wish to determine
the properties of such resonances from first principles, it is essential to have a generalization of the
two-particle quantization condition to one that includes three particles. Such an extension is also
needed to use LQCD to study weak decays involving three particles, e.g. K→ 3π .

In Refs. [4, 5] two of us have provided such a generalization, applicable to three identical,
relativistic, spinless particles whose interactions are constrained by a G-parity-like symmetry. We
briefly describe this work, referring to Refs. [4, 5] for details. It consists of two parts. The first is a
three-particle quantization condition1

det(F−1
3 +Kdf,3) = 0 . (1.1)

where here and below all quantities are infinite-dimensional matrices in the space of on-shell three-
particle states in FV.2 Kdf,3 is a three-particle generalization of the K-matrix—an infinite-volume
quantity that is, however, not physical as it contains an UV cutoff. F3 is the matrix

F3 =
F2

2ωL3

[
1
3
−M2,LF2−D

(u,u)
L

F2

2ωL3

]
, (1.2)

where L is the box size (assuming a cubic box), ω the relativistic energy, F2 is a generalized Lüscher
zeta-function (a known volume-dependent matrix), M2,L is a FV version of the two-particle scatter-
ing amplitude, and D

(u,u)
L is the contribution to the FV three-particle scattering amplitude that con-

tains only two-particle interactions. The key point is that F3 depends only on known, L-dependent
kinematic functions and the infinite-volume two-particle scattering amplitude M2. Thus it can be
determined by applying the two-particle quantization condition to the two-particle FV spectrum.

The second part of the three-particle formalism connects Kdf,3 to the infinite-volume three-
particle scattering amplitude M3 [5]. The latter is obtained using

M3 = lim
L→∞

∣∣
iεM3,L , with M3,L = S

[
D

(u,u)
L +L

(u)
L Kdf,3

1
1+F3Kdf,3

R
(u)
L

]
. (1.3)

Here the iε subscript indicates a particular infinite-volume limit, and M3,L is a FV version of the
scattering amplitude. The quantities L

(u)
L and R

(u)
L depend on M2 and known kinematic functions,

like F3 and D
(u,u)
L . Thus if M2 and Kdf,3 are obtained, respectively, from the two- and three-particle

1This result holds up to exponentially suppressed FV effects, proportional to e−mL, that we ignore throughout.
2In any practical application this matrix space must be truncated, as in the two-particle case.
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quantization conditions, then M3 can, in principle, be determined from Eq. (1.3). Working out the
details, one finds that this requires solving nested UV-finite integral equations involving on-shell
quantities [arising from the implicit matrix indices in Eq. (1.3)] [5].

There are two major limitations of this formalism. First, it assumes a Z2 symmetry forbidding
1→ 2, 2→ 3, etc. transitions. Thus it is applicable (to good approximation) to three pions, where
G-parity enforces the Z2 symmetry, but not to most three-particle systems. Second, it requires that
the two-particle channel be nonresonant in the kinematic range of interest. For example, in a three-
pion system with vanishing total momentum, angular-momentum and I = 1, the total energy must
satisfy E < mπ +mR, where mR is the position of the pole in the two-particle K-matrix correspond-
ing to the lightest f0 resonance. This is a very serious limitation on the practical applicability of
the formalism.3

2. Extensions of the formalism

We are actively working on removing the two limitations just described, and provide a brief
update on the status of this work. We have made the most progress on removing the Z2 symmetry.
Based on our analysis so far, we conjecture that the generalized quantization condition is

det

[(
F−1

2 0
0 F−1

3

)
+

(
K2 K3→2

K2→3 Kdf,3

)]
= 0 . (2.1)

This rather natural generalization of the three-particle quantization condition (1.1), and the corre-
sponding two-particle result det(F2 +K −1

2 ) = 0, extends the matrix indices to contain both two-
and three-particle on-shell FV phase space. This extension arises from the fact that correlators in
the Z2-less theory have cuts containing of any number of on-shell particles. The result (2.1) holds
for m < E < 4m, where only two and three-particle cuts are allowed. The key point is that phys-
ical, on-shell 2→ 3 and 3→ 2 transitions are allowed, and this leads to the off-diagonal terms in
the second matrix in (2.1). These off-diagonal terms contain infinite-volume K-matrices that, like
Kdf,3 (and K2 below threshold), are unphysical.

One key feature of this conjectured result is that, unlike Kdf,3, the 2→ 3 and 3→ 2 K-matrices
do not contain divergences arising from long-distance propagation of on-shell particles. K2→3 and
K3→2 are quasi-local vertices that can be expanded in spherical harmonics.

To establish Eq. (2.1) requires extending the analysis of Ref. [4]. One begins with the skeleton
expansion of a FV correlator, locates the position of all possible power-law FV dependence (which
are the two- and three-particle cuts), and then replaces FV momentum sums with integrals plus the
difference. The skeleton expansion here is more complicated than with a Z2 symmetry, requiring
a large number of additional Bethe-Salpeter kernels. Nevertheless, we have a partial argument
leading to (2.1), and hope to complete it soon.

Having done so, the second step will be to relate the four infinite-volume-but-unphysical K-
matrices {K2,K2→3,K3→2,Kdf,3} to the infinite-volume scattering amplitudes {M2,M2→3,M3→2,M3},
i.e. to generalize Eq. (1.3). Our preliminary results indicate that the resulting integral equations are

3Other restrictions—to identical, and thus necessarily degenerate, particles and to spinless particles—are expected
to be simpler to remove, based on experience with two particles. We do not discuss these here.
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coupled, so that all four K-matrices must be known at a given energy in order to determine any of
the scattering amplitudes.

We are at an earlier stage in removing the second limitation of the original formalism, namely
the requirement that K2 have no above-threshold poles. Our approach is to use the factorization of
the residues of these poles to simplify the resulting expressions, and to explicitly account for the
new FV effects that these poles introduce.

3. A new test of the formalism: FV energy shift for a three-particle bound state

In the remainder of this talk I report on a new test of the original three-particle formalism of
Refs. [4, 5]. This is based on work with Hansen that is now written up in Ref. [6]. I present here
only an overview of the argument.

We think that it is important to provide checks of the formalism, since it is rather involved
and required a very lengthy derivation. We have already completed one such check in Refs. [7, 8],
where we have determined the energy of the three-particle state closest to threshold in a series
in 1/L. The 1/L3, 1/L4 and 1/L5 terms agree, as expected, with results from NRQM. The 1/L6

term contains relativistic effects, and is also the first term in which the three-particle scattering
amplitude enters. We have done an auxiliary calculation of the threshold energy in relativistic λφ 4

theory, working through O(λ 3) in perturbation theory [8]. The results for the 1/L3−6 terms from
our formalism and perturbation theory are in complete agreement.

The new check presented here is based on the work of Ref. [9], hereafter referred to as MRR.
These authors use NRQM to determine the leading volume dependence of the energy of a three-
particle bound state with total momentum ~P = 0. Specifically, they assume only two-particle po-
tentials, and that these are near the unitary limit of infinite scattering length. In this limit, first
considered by Efimov [10], there is a sequence of three-particle bound states.4 Focusing on one
such bound state, MRR find

EB = 3m−κ
2/m+∆E3(L) , (3.1)

∆E3(L) = c
κ2

m
1

(κL)3/2 exp
(
−2κL/

√
3
)[

1+O

(
κ

m
,

1
κL

)]
. (3.2)

The first equation defines κ , while the second gives the leading volume dependence of the energy.
The constant c is known, and depends on the detailed form of the wavefunction of the (infinte-
volume) Efimov state.5 Our aim here is to fully reproduce Eq. (3.2) using our formalism.

The corresponding equation for a two-particle bound state can be determined from Lüscher’s
original quantization condition (and from NRQM), and takes the form [11]

∆E2(L) =−12
κ2

m
1

κL
e−κL

[
1+O

(
κ

m
,

1
κL

)]
. (3.3)

Thus we see that the three-particle case has a different exponent, different power of 1/L, and a
more complicated constant.

4This is true for both signs of the scattering length. Here we assume a positive scattering length so that there are no
two-body bound states.

5Here we use a slightly different definition of c than that used by MRR or in Ref. [6].
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The calculation of MRR assumes that only s-wave interactions contribute. Making this ap-
proximation in our formalism reduces the size of the matrix space in Eqs. (1.1) and (1.3). The
matrix index is now given solely by the momentum of one of the three particles—the “spectator"—
while the other two are in a relative s-wave.6 In all subsequent formulae the spectator momentum
is shown explicity, and there are no implicit matrix indices.

The logic of the calculation is straightforward.7 M3 has, by assumption, a pole at E = EB:

M3(~p,~k) =−
Γ(~p)Γ(~k)
E2−E2

B
+non-pole , (3.4)

where the residues are the amputated, on-shell Bethe-Salpeter amplitudes. We also know that, since
M3,L is a FV correlation function, it has poles at the energies of the FV states, and in particular
at the shifted FV energy of the bound state. Given Eq. (1.3), we know that, for large L, M3,L is
close to M3. The idea is then to quantify this closeness by systematically determining the volume
dependence of M3,L using Eq. (1.3).

M3 and M3,L differ because momentum integrals in the former are replaced by sums (i.e. by
matrix products) in the latter. We can systematically replace sums with integrals plus sum-integral
differences. Since we are working below threshold, with no on-shell intermediate states, the vol-
ume dependence of the sum-integral differences is exponentially suppressed, but with the exponent
proportional to κL. This leads to a much weaker suppression than that from the contributions pro-
portional to e−mL that we consistently neglect. We keep the terms with the smallest exponential
suppression, which turn out to have exponent −2κL/

√
3, and also drop terms suppressed by addi-

tional powers of 1/L. Using the properties of the residue functions Γ and Γ, which will be discussed
below, we find that the dominant FV corrections arise from three-particle cuts lying between the
scattering of one pair and a different pair (which we label “switch states"). With this simplification
we are able to show that the unsymmetrized versions of M3,L and M3 satisfy8

M
(u,u)
3,L (~p,~k) = M

(u,u)
3 (~p,~k)+

[
1
L3 ∑

~̀

−
∫ d3`

(2π)3

]
M

(u,u)
3 (~p,~̀)

1
2ω`M2(`)

M
(u,u)
3,L (~̀,~k) . (3.5)

The unsymmetrized amplitudes have poles at the same positions as the symmetrized ones, and by
substituting the pole forms [e.g. Eq. (3.4)] into this equation we find the energy shift to be

∆E3(L) =−
1

2EB

[
1
L3 ∑

~k

−
∫ d3k

(2π)3

]
Γ
(u)
(k)Γ(u)(k)

2ωkM2(k)
. (3.6)

Here Γ(u), Γ
(u) are the residues appearing in the pole form for the unsymmetrized amplitude M

(u,u)
3 .

Note that these turn out to depend only on the magnitude of the spectator momentum, as does M2.

6In FV this spectator momentum is quantized. Note that the asymmetry inherent in the choice of spectator is
removed by subsequent symmetrization in our formalism.

7The following description is an updated version of that given in the talk, based on subsequent improvements in the
derivation. In particular, we no longer need to make the approximation Kdf,3 = 0.

8Unsymmetrized means that the first two-particle interaction occurring in a skeleton expansion of M3 and M3,L
occurs between the non-spectator pair. M2(~̀) gives the scattering amplitude for two particles with total four-momentum
P2 = (E−ω`,−~̀). In the sum, ~̀= 2π~n/L with~n a vector of integers.
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To proceed, we need to know the residue functions, which, as noted above, are the ampu-
tated, on-shell versions of the Bethe-Salpeter (BS) amplitudes for the bound state. We know the
Schrödinger wavefunction of the bound states (reviewed, for example, in Ref. [12]), so the issue is
how to obtain the BS amplitudes from the wavefunction. This question was addressed, long ago,
in Ref. [13]. This work assumed only instantaneous two-particle interactions and worked in the
nonrelativistic limit. These are the assumptions made also by MRR, so the result of Ref. [13] is
sufficient for our purposes. Using this result (which we have checked in detail, as a full derivation
is not supplied in Ref. [13], and corrected the normalization factor) we find9

Γ
(u) = 4

√
3m2 lim

on shell

[
−κ2

m
− ∑

i=1,3

~p2
i

2m

]
φ̃3 . (3.7)

φ̃3 is the Fourier transform of the part of the wavefunction that corresponds to the unsymmetrized
BS amplitude. It satisfies the Fadeev equation, in which only the potential between two of the
particles appears. The key point here is that the explicit form of φ3 is known [12]. The meaning
of “on shell" is that the free Schrödinger operator, i.e. the term in square brackets, vanishes. The
right-hand side does not vanish, however, because φ̃3 diverges. We find

Γ
(u)
(k)Γ(u)(k) =−c 64 33/4

π
5/2 m2

κ2

[
1+

3k2

4κ2

]−1

+ . . . , (3.8)

with c the same constant as in Eq. (3.2). Here we have kept only the leading singularity for small
k, since this leads to the dominant FV correction when inserted into Eq. (3.6).

To evaluate the Eq. (3.6), we also need M2 in the unitary limit:

1
M2(k)

=
κ

32πm

[
1+

3k2

4κ2

]1/2

. (3.9)

Inserting this and Eq. (3.8) into (3.6), using the Poisson summation formula, and evaluating the
integral, we find

∆E3(L) = c
κ2

m
2

31/4
√

πκL
K1

(
2κL√

3

)
, (3.10)

whose asymptotic form agrees with the MRR result, Eq. (3.2).

4. Extension to a moving three-particle bound state

Within our formalism, it is straightforward to generalize this result to a moving frame. In
the two-particle case, the corresponding generalization of the rest-frame result, Eq. (3.3), has been
given in Ref. [14]. They found, for total momentum ~P = 2π~nP/L, the simple form

∆E2,~P(
~L) = f2[~nP]∆E2(L) , f2[~nP] =

1
6 ∑

ŝ
ei2π ŝ·~nP/2 , (4.1)

where the sum runs over the six integer vectors of unit length. Thus the form of the volume
dependence is unchanged, but the overall factor depends on ~P. This dependence turns out to be

9The same result holds for Γ
(u) aside from complex conjugation. This schematic form does not show the arguments

of Γ(u) and φ̃3, as we do not have space to explain all the details here. For these see Ref. [6].
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rather dramatic, e.g. f2[~0] = 1 while f2[(1,1,1)] = −1. Furthermore, by combining results from
different frames, the leading exponential dependence can be canceled [14].

We find a similar form in the three-particle case, but with a different prefactor:

∆E3,~P(
~L) = f3[~nP]∆E3(L) , f3[~nP] =

1
6 ∑

ŝ
ei2π ŝ·~nP/3 . (4.2)

Again the prefactor various rapidly with momentum. The fact that the volume dependence changes
only by an overall factor means that, as in the two-particle case, it is possible to cancel the leading
dependence by combining results from different frames. In fact, since f3[(1,1,0)] = 0, the volume
dependence for~nP = (1,1,0) is subleading.
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