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We explore a method to extract energy eigenstates, called Athens Model Independent Analysis
Scheme (AMIAS), which is an alternative to solving standard Generalized Eigenvalue Problems
(GEVP). The method is based on statistically sampling the space of fit parameters according to
the χ2 value of the fit function. The method is particularly suited for correlators or correlation
matrices with strong contributions from several energy eigenstates and for rather noisy data, e.g.
for correlators with disconnected and partly disconnected diagrams. We apply the method to the
analysis of the JP = 0+ channel in the context of our investigation of the a0(980) meson and point
out advantages compared to the GEVP.
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1. Introduction

In this work we explore AMIAS, a rather new analysis method to extract energy differences
and amplitudes from lattice QCD correlators and correlation matrices. The basic idea is to consider
a very large number of fits to these correlators using Monte Carlo methods, which will lead to
probability distributions for the fit parameters, that are the energy differences and amplitudes. This
avoids the necessity of identifying plateau regions for effective energies. In particular, for unstable
systems and resonances identifying plateaus can be very challenging, since the signal-to-noise
ratio is typically rather poor for large temporal separations. Moreover it overcomes the limitation
of extracting at most N energy eigenstates, when N interpolating fields are used (as it is e.g. the
case, when doing a standard GEVP analysis)

We apply AMIAS to analyze correlators computed for studying the a0(980) meson, which has
quantum numbers I(JP) = 1(0+) and mass ma0(980) ≈ 980MeV [1]. We use interpolating fields
with both two-quark and a four-quark structures formed by an up-quark u and an anti-down quark
d̄ and except for one case a strange and an anti-strange quark s and s̄. The four-quarks are arranged
as a meson-meson interpolating field or in a diquark-anti-diquark combination, which can probe
different possible tetraquark structures of a0(980). We consider six interpolating fields,

O1 := Oqq̄ =
1√
Vs

∑
x

(
d̄(x)u(x)

)
(1.1)

O2 := OKK̄, point =
1√
Vs

∑
x

(
s̄(x)γ5u(x)

)(
d̄(x)γ5s(x)

)
(1.2)

O3 := Oηsπ, point =
1√
Vs

∑
x

(
s̄(x)γ5s(x)

)(
d̄(x)γ5u(x)

)
(1.3)

O4 := OQQ̄ =
1√
Vs

∑
x

εabc

(
s̄b(x)(Cγ5)d̄T

c (x)
)

εade

(
uT

d (x)(Cγ5)se(x)
)

(1.4)

O5 := OKK̄, 2part =
1
Vs

∑
x,y

(
s̄(x)γ5u(x)

)(
d̄(y)γ5s(y)

)
(1.5)

O6 := Oηsπ, 2part =
1
Vs

∑
x,y

(
s̄(x)γ5s(x)

)(
d̄(y)γ5u(y)

)
, (1.6)

where Vs denotes the spatial lattice volume and C the charge conjugation matrix. All of them couple
to a0(980) and other states with the same quantum numbers. For example, the interpolating fields
O5 and O6 mainly generate the two-meson states K+K and π+η , respectively, which are expected
to have masses close that of the a0(980). Note that the interpolating fields O2 and O3 represent two
mesons located at the same point in space with only total momentum zero, but arbitrary relative
momenta involved (a structure resembling a 4-quark bound state). In contrast to that O5 and O6

correspond to two mesons with both total and relative momentum zero.
We compute the full six by six correlation matrix including both connected and disuconnected

contributions, which we neglect in our previous studies [2, 3, 4]. Moreover here we have in-
creased statistical accuracy of the correlators C jk(t) = 〈O j(t)Ok†(0)〉, included propagation of
strange quarks within a timeslice and analyzed the correlators with AMIAS. We use an ensem-
ble of around 500 gauge link configurations generated with 2+1 dynamical Wilson clover quarks
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and Iwasaki gauge action generated by the PACS-CS Collaboration [5]. The lattice size is 64×323

with lattice spacing a≈ 0.09fm and pion mass mπ ≈ 300MeV.

2. Correlators on a periodic lattice

A correlator on a periodic lattice with time extent T can be expanded according to

C jk(t) =
〈
O j(t)Ok†(0)

〉
=

∑m,n exp{−Em(T − t)}〈m|O j|n〉exp{−Ent}〈n|Ok†|m〉
∑m exp{−EmT}

(2.1)

with energy eigenstates |m〉 and corresponding energy eigenvalues E0 ≤ E1 ≤ E2 . . . (|0〉 = |Ω〉
denotes the vaccum). This correlator can also be expressed in a more convenient form,

C jk(t) =
〈
O j(t)Ok†(0)

〉
=

∑m,n c j
m,n(ck

m,n)
∗exp{−(Em +En)(T/2)}cosh{∆En,m(t−T/2)}

∑m exp{−EmT}
(2.2)

with c j
m,n = 〈m|O j|n〉 and ∆En,m = En−Em. For example, if j = k, if O j probes the sector, which

contains energy eigenstate |1〉, if the quantum numbers of |1〉 are different from those of the vacuum
|Ω〉, and if the correlator is not contaminated by multi-particle states (see discussion below), (2.2)
reduces to

C j j(t) =
〈
O j(t)Ok†(0)

〉
≈ 2
∣∣∣c j

0,1

∣∣∣2 exp{−∆E1,Ω(T/2)}cosh{∆E1,Ω(t−T/2)} (2.3)

for sufficiently large t and T . A standard technique to determine the energy difference ∆E1,Ω =

E1−EΩ, the mass of state |1〉, from the asymptotic t behavior of C j j(t) (Eq. (2.3)) is to fit

C j j(t) = Acosh{−∆E1,Ω(t−T/2)} (2.4)

to the lattice QCD results for C j j(t) with fitting parameters ∆E1,Ω and A. Alternatively, one can
also solve the equation

C j j(t)
C j j(t−a)

=
cosh{Eeff(t)(t−T/2)}

cosh{Eeff(t)(t−a−T/2)}
(2.5)

with respect to Eeff(t), where Eeff(t) ≈ ∆E1,Ω. In other words, a plateau-like behavior of Eeff(t)
indicates the mass E1,Ω. In practice, however, the temporal extent T of the lattice is limited and
the effective energy Eeff(t) is often very noisy for large t, rendering a reliable extraction of ∆E1,Ω

difficult.
When multi-particle states are present in the investigated sector, the determination of low-

lying masses is even more difficult. We sketch this for a simple non-interacting two-meson sys-
tem, which is generated by an interpolating field O = O(1)⊗O(2). Energy eigenstates of such
a system can be written as |n〉 = |n1〉(1)⊗ |n2〉(2), where |n1〉(1) and |n2〉(2) (n1,n2 = 0,1,2, . . .)
are eigenstates of the two Hamiltonians describing the individual mesons. Energy eigenvalues
of this two-meson system are E

(1+2)
n1,n2 = E

(1)
n1 +E

(2)
n2 , in particular the lowest energy eigenvalue is

E
(1+2)

0,0 = E
(1)

0 + E
(2)

0 . Note that in the expansion (2.2) there is a term, which is proportional to

cosh{(E (1)
0 −E

(2)
0 )(t−T/2)}, i.e. only decaying with the mass difference of the two mesons. In

the region of t ≈ T/2 this unwanted term can be more dominant than the signal term, which is
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proportional to cosh{E (1+2)
0,0 −EΩ)(t−T/2)}. Thus, one has to be rather careful, when analyzing

correlators of sectors containing multi-particle states. This is illustrated by Fig. 1, where we show
the correlator using the interpolating field Oqq̄ (Eq. (1.1)). Clearly, there are two effective mass
plateaus, aEeff(t) ≈ 0.60 for t/a<∼7, corresponding to the mass of a π +η or a K +K two-meson
state, and aEeff(t)≈ 0.25 for t/a>∼8, which does not correspond to the mass of any state, but to the
mass difference mη −mπ of two single-meson states.
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Figure 1: Left: Correlator using the interpolating field Oqq̄. Right: Corresponding effective mass.

3. AMIAS

Lattice QCD results for the correlators C jk(t) = 〈O j(t)Ok†(0)〉with O j, j = 1, . . . ,6 defined in
Eqs. (1.1) to (1.6) can be parameterized and fitted the expression given in Eq. (2.2). Since statistical
accuracy is limited, it is sufficient to consider a rather small number of energy eigenstates, i.e.
∑m,n,∑m→ ∑

N−1
m,n=0,∑

N−1
m=0 with N <∼10.

With AMIAS [6, 7, 8] one can determine probability distribution functions (PDFs) for the fit
parameters ∆En,m (energy differences) and c j

m,n (amplitudes). AMIAS is able to deal with a rather
large number of parameters by using Monte Carlo techniques. In contrast to e.g. the GEVP, it is
not necessary to identify plateau regions or to specify temporal fitting ranges.

The PDF for the complete set of fit parameters is given by

P(∆En,m,c j
m,n) =

1
Z

e−
χ2
2 (3.1)

with appropriate normalization Z and

χ
2 = ∑

j,k

(T−1)/a

∑
t/a=1

(Clattice
jk (t)−C jk(t))2

(w jk(t))2 , (3.2)

which is the well-known χ2 used in χ2 minimizing fits (Clattice
jk (t) denote lattice QCD results for

correlators with corresponding statistical errors w jk(t)). To obtain the PDF for a specific fit pa-
rameter, one has to integrate in (3.1) over all other parameters. In particular, the probabilty for
parameter A j to be inside [a,b] (A j represents either one of the energy eigenvalue differences
∆En,m or amplitudes c j

m,n) is

Π(A j ∈ [a,b]) =

∫ b
a dA j

∫ +∞

−∞ ∏k 6= j dAk e−χ2/2∫ +∞

−∞ ∏k dAk e−χ2/2
. (3.3)

3
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This multi-dimensional integral can be computed with standard Monte Carlo methods. We imple-
mented a parallel-tempering scheme combined with the Metropolis algorithm as described in detail
in Ref. [8]. The parallel-tempering scheme prevents that the algorithm is stuck in a region around
a local minimum of χ2 and, thus, guarantees ergodicity of the algorithm.

We have again analyzed the correlator of Oqq̄ shown in Fig. 1 (left), this time using AMIAS
with fit function

C(t) =
2

∑
n=1

Ancosh{∆En(t−T/2)}. (3.4)

The resulting PDFs for the four parameters ∆E1, ∆E2, A1 and A2 are shown in Fig. 2. As in Fig. 1
(right) two energy differences can clearly be identified, a∆E1 ≈ 0.25 (the mass difference mη−mπ )
and a∆E2 ≈ 0.60 (the mass of a π +η or K +K two-meson state).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a E

∆ε1

∆ε2

0 0.5 1

A

A1

A2

Figure 2: AMIAS analysis of the correlator of Oqq̄. PDFs for the parameters ∆E1, ∆E2, A1 and A2 from
(3.4).

4. Analysis of the 6×6 correlation matrix

We now use AMIAS to analyze the 6× 6 correlation matrix with interpolating fields (1.1) to
(1.6). The fit function is obtained by restricting (2.2) to a finite number of terms,

C jk(t) =
N

∑
n=1

c j
n(c

k
n)
∗cosh{∆En(t−T/2)}. (4.1)

In a first analysis we use lattice QCD data, where the propagation of strange quarks within the
same timeslice has been neglected. The interpolating field Oqq̄ then decouples and, hence, cannot
be considered in a tetraquark study of a0(980) (cf. also Refs. [2, 3], where the same data has been
used). Moreover, we do not consider the diquark-antidiquark interpolating field OQQ̄. In Fig. 3
(top) we show the four lowest masses obtained with N = 8 terms in (4.1)1, corresponding to the
expected two-particle states π +η and K +K with both mesons at rest (∆E2 and ∆E3) as well as
with one quantum of relative momentum (∆E4 and ∆E5). Note that AMIAS also finds the energy
eigenvalue difference mη −mπ (∆E1, not shown in Fig. 3), which has already been discussed in
previous sections.

Since (c j
n)∗ = 〈n|O j†|Ω〉, the amplitudes extracted with AMIAS are the coefficients of the

expansions of the trial states O j†|Ω〉 in terms of the extracted energy eigenstates |n〉, i.e.

O j†|Ω〉 ≈
N

∑
n=1

(c j
n)
∗|n〉. (4.2)

1AMIAS is able to determine the optimal N automatically. For details we refer to [8].
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Figure 3: AMIAS analysis of the 4× 4 correlation matrix with interpolating fields O2 = OKK̄, point, O3 =

Oηsπ, point, O5 = OKK̄, 2part and O6 = Oηsπ, 2part (propagation of strange quarks within the same timeslice
neglected). Top: PDFs for the parameters ∆E2, . . . ,∆E5 from (4.1). Bottom: |v j

n|, the corresponding overlaps
to the trial states O j†|Ω〉.

More interesting, however, are the opposite expansions, i.e. the extracted energy eigenstates in
terms of the trial states,

|n〉 ≈ ∑
j=2,3,5,6

v j
nO

j†|Ω〉. (4.3)

It is easy to show that the matrix formed by the coefficients vi
n is the inverse of the matrix formed

by the coefficients (c j
n)∗ ( j = 2,3,5,6, n = 2, . . . ,5) up to exponentially small corrections, i.e.

∑ j v j
m(c

j
n)∗ = δm,n. Alternatively, one can also use the AMIAS samples for ∆En and c j

n and Eq. (4.1)
to reconstruct a correlation matrix for each sample. Solving standard GEVPs for each reconstructed
correlation matrix yields eigenvectors with components identical to v j

n. The coefficients |v j
n| are

shown in Fig. 3 (bottom) (not the PDFs, but the most likely values). Clearly, ∆E2 and ∆E3 corre-
spond to two-particle states π +η and K +K with both mesons at rest, since the coefficients v j

n

show almost exclusively overlap to the trial states Oηsπ, 2part†|Ω〉 and OKK̄, 2part†|Ω〉. ∆E4 and ∆E5

are close to the expected two-particle states with one quantum of relative momentum and the over-
laps shown by v j

n are consistent with this interpretation. There is no indication for any additional
state in the region of 1000MeV, which could correspond to a0(980). These findings are consistent
with our previous study using ETMC gauge link configurations [9].

When including the propagation of strange quarks within the same timeslice, the interpolating
field Oqq̄ couples to the four-quark interpolating fields given in Eqs. (1.2) to (1.6). This introduces,
however, a lot of statistical noise and it is rather difficult to resolve energy differences precisely.
In Fig. 4 we show preliminary AMIAS results for the full 6×6 correlation matrix, where N = 12
terms in Eq. (4.1) have been used. The two lowest energy eigenstates exhibit rather clear signals
and correspond to the π +η and K +K two-meson states. Even though higher excitations are less
prominent, we find strong indication for an additional state with mass ∆E3 ≈ 0.6/a ≈ 1300MeV,
which is below the expectation for the two-particle states with one quantum of relative momentum

5
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and, hence, might be a candidate for the a0(980).
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Figure 4: AMIAS analysis of the full 6× 6 correlation matrix (propagation of strange quarks within the
same timeslice taken into account). PDFs for the parameters ∆E2, . . . ,∆E6 from (4.1) generated by AMIAS.

5. Conclusions

With AMIAS one can extract energy differences and amplitudes without the necessity to iden-
tify pleateau regions or to specify temporal fitting ranges. We have shown that AMIAS can suc-
cessfully be used to analyze correlators with strong contributions from several energy eigenstates as
well as rather noisy correlation matrices. An example for the latter is e.g. the full 6×6 correlation
matrix for the a0(980) channel. Another major advantage of AMAIAS might be, that it does not
require all elements of a correlation matrix, i.e. particularly noisy elements or elements, which are
very time-consuming to compute, can be omitted. This we plan to address in a future publication.
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